
Journal o f  Statistical Physics, Vol. 82, Nos. 5/6, 1996 

The Covariance Matrix of the Potts Model: 
A Random Cluster Analysis 
C. Borgs ~ and J. T. Chayes 2 

Receioed September 14, 1994;final August 10, 1995 

We consider the covariance matrix, G "m = q2(c~(tr~, m); cf(a~., n ) ) ,  of the 
d-dimensional q-states Potts model, rewriting it in the random cluster represen- 
tation of Fortuin and Kasteleyn. In any of the q ordered phases, we identify the 
eigenvalues of this matrix both in terms of representations of the unbroken 
symmetry group of the model and in terms of random cluster connectivities 
and covariances, thereby attributing algebraic significance to these stochastic 
geometric quantities. We also show that the correlation length corresponding to 
the decay rate of one of the eigenvalues is the same as the inverse decay rate of 
the diameter of I-mite clusers. For dimension d = 2, we show that this correlation 
length and the correlation length of the two-point function with free boundary 
conditions at the corresponding dual temperature are equal up to a factor of 
two. For systems with first-order transitions, this relation helps to resolve cer- 
tain inconsistencies between recent exact and numerical work on correlation 
lengths at the self-dual point flo. For systems with second order transitions, this 
relation implies the equality of the correlation length exponents from above and 
below threshold, as well as an amplitude ratio of two. In the course of proving 
the above results, we establish several properties of independent interest, 
including left continuity of the inverse correlation length with free boundary 
conditions and upper semicontinuity of the decay rate for finite clusters in all 
dimensions, and left continuity of the two-dimensional free boundary condition 
percolation probability at flo. We also introduce DLR equations for the random 
cluster model and use them to establish ergodicity of  the free measure. In order 
to prove these results, we introduce a new class of events which we call decoupl- 
ing events and two inequalities for these events. The first is similar to the FKG 
inequality, but holds for events which are neither increasing nor decreasing; the 
second is similar to the van den Berg-Kesten inequality in standard percolation. 
Both inequalities hold for an arbitrary FKG measure. 
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1. I N T R O D U C T I O N :  B A C K G R O U N D  A N D  D I S C U S S I O N  OF 
RESULTS 

The q-state Potts model has been the subject of increasing interest in 
recent years. On the one hand, it has been studied by probabilists and 
statistical mechanicists due to its relationship to the random cluster 
model, t13" 1) where many of the known results for percolation are open and 
interesting problems. On the other hand, the phase transitions in the Potts 
model provide a paradigm for testing numerical methods developed for 
more complex transitions, such as deconfinement in lattice QCD: The 
Potts model is relatively easy to simulate with efficient algorithms (see, e.g., 
ref. 37), it can be tuned from a second-order through a weakly first-order 
to a strongly first-order transition by varying the number of states q, and 
many quantities of interest are explicitly known for dimension d =  2, 
thus allowing for a direct test of numerical methods. Finally, many of the 
exact results on the Potts model have recently been shown to have 
fascinating algebraic interpretations (see, e.g., Section VII.B in the review 
of ref. 39). 

Motivated by discrepancies between recent exact and numerical results 
on the correlation length of the Ports model, we have undertaken to iden- 
tify and study the relevant length scales in the problem. We relate these 
scales both to the algebraic structure of the unbroken symmetry group and 
to stochastic geometric quantities in the random cluster representation of 
the Ports model. In the process, we show that the some of natural 
stochastic geometric quantities one defines in the random cluster represen- 
tation--e.g., the finite-cluster connectivity--have independent algebraic 
significance. In two dimensions, we prove a relation between various scales 
which is an extension of known relations for percolation and the Ising 
magnet, and which establishes a strong form of Widom scaling for Potts 
models with continuous transitions. We also prove an analog of this rela- 
tion for two-dimensional Ports models with discontinuous transitions; this 
analog helps to explain the apparent discrepancy between the exact and 
numerical results. 

Adopting a field-theoretic perspective, we identify the relevant lengths 
in the model by studying the eigenvalues of the covariance matrix 

G~"(x  - y )  = ( qt~(a:,., m); qO(ay, n) ) b ( 1.1 ) 
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Here or,. e { 0 ..... q - 1 } are the usual spins of the Potts model, 8( . ,  �9 ) is the 
Kronecker delta, ( �9 )b is the expectation with respect to the infinite-volume 
state obtained from finite-volume states with "b" boundary conditions, and 
(A; B ) b  = ( A B ) b - ( A ) b ( B ) b  is the truncated expectation of the func- 
tions A and B. 

In the disordered phase, we consider the covariance matrix with free 
boundary conditions, ~ ' "  { x vrree~ - y ) .  We find that this is proportional to the 
standard two-point function, which in turn is equal to the connectivity 
function in the random cluster representation: 

G rr"'e'=( x - Y ) = ( q~( m, n ) - l ) ( q - ~  ( qc~( cr x, ~r y ) - l ) ) r~ ~ 

= (q3(m, n ) -  1) rrr~,(x- y) (1.2) 

Here the connectivity, rrr~,(x-y),  is the probabililty with respect to the 
free-boundary-condition random cluster measure that x and y lie in the 
same component. That r f~=(x-y)  is equal to the two-point function in 
finite volume is well known both to probabilists and to numerical 
physicists, the latter of whom use this equivalence to measure the two-point 
function according to the "improved estimators" approach. Our only con- 
tribution here is to verify the equivalence in infinite volume. We note that, 
in the disordered phase, the covariance matrix contains no more informa- 
tion than the standard two-point function, or equivalently, the connectivity 
function. 

The problem is more subtle in the ordered phase, where we consider 
the matrix G ' ~ " ( x - y )  with fixed constant boundary conditions, c ~ S =  
{0 ..... q - 1 } .  Defining the finite-cluster connectivity fi, Zwir(X--y ) to be 
the probability, in the so-called wired random cluster measure, that x 
find y lie in the same finite component, and the infinite-cluster covariance 
Cwir(X--y ) to be the covariance, again in the wired measure, of the events 
that x and y lie in the infinite component, we prove that the matrix 
elements G " j " ( x - y )  are linear combinations of n, rwi r (x -y  ) and Cwir(X-y), 
namely 

= - tw i t (x -y )  + (q~(m, c) - 1) G ' " ( x - - y )  (q~(m, n) 1) n, 

x (q~(n, c ) -  1) C , i ~ ( x - y )  (1.3) 

We remark that while the finite-volume analog of (1.3) is a straightforward 
consequence of the random cluster representation, the proof of the infinite- 
volume limit involves some subtleties related to how the infinite cluster 
emerges from large finite clusters in the wired problem (for more details, 
see the remark following Proposition 3.4). 
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Percolation analogs of n, ( v~,ir ,x-y) and Cwir(X-y)--in the absence of 
boundary conditions--have arisen previously in ref. 7, where they appeared 
as a natural decomposition of the truncated percolation connectivity in the 
ordered phase. There, however, they did not have independent signficance, 
appearing only as a sum. The question naturally arises whether they have 
independent significance here. Obviously, this is not the case for q = 2, for 
which (1.3) can be rewritten as 

G'"(x-y)  (2fi(m, n) 1 fin = - ) ( twi t (x-y)  + Cwir(X--y)) 

~n  involving again only the sum rwi~(x - y )  + Cwir(X - y ) .  
For q t> 3, however, the fixed-boundary-condition covariance matrix 

G"fl"(x-y) has a richer structure. We prove that it has a simple eigenvalue 
zero and a nontrivial simple eigenvalue 

( I )  __  fin Gwir(X y )  = q Z w i r ( X - - y  ) +q(q-- 1) Cwir(X-y ) (1.4) 

both corresponding to the trival representation of the unbroken subgroup 
Sq_l of permutations of S\{c}, as well as one (q -2 ) - fo ld  degenerate 
eigenvalue 

(2 )  fin 
Gwir(X --y) = q~'wir(X --y) (1.5) 

corresponding to the remaining orthogonal subspace. 3 Thus we see that for 
q/> 3, the finite-cluster cluster connectivity, an zwir(x-y),  has independent 
algebraic significance as an eigenvalue of the covariance matrix, and hence 
also physical significance in terms of the associated one-particle spectrum. 
As for the infinite cluster covariance Cwir(x-y), we will show in Theorem 
4.3 that its decay rate is equal to the decay rate of the eigenvalue G cl) w i r  

whenever the magnetization is positive. Thus although Cwir(x-y) does not 
have independent algebraic significance, its decay rate does. 

For completeness, we note that the free boundary condition matrix, 
G~r'~'e(x-y), can be diagonalized as well, yielding a simple eigenvalue zero 
and a ( q -  1)-fold degenerate eigenvalue 

Gfree(X - y) = qZfree(X -- y) (1.6) 

Given the eigenvalues (1.4)-(1.6), one naturally defines the inverse 
correlation lengths: 

s For the Ising model (q = 2), G"~'(x-y) has only the trivial eigenvalue zero and the eigen- 
value G~ilr( X -- y). 
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1 _ lim 1-~ log Grr~e(x) (1.7) ixl 
1 1 

(I) - -  lim ( ) ] ~  log awir(X ) (1.8) 
~wir(fl) Ixl ~ oo 

and 

1 ~ (2) 
(2) lim log Gwir(X) (1.9) ~,~(/~) I~-M- 

Here, as usual, fl is the inverse temperature of the model. In all cases, the 
limits are taken so that x lies along a coordinate axis. In order to establish 
the existence of the limits, we return to the spin representation and use 
reflection positivity. We also give alternative subadditive proofs of the 
existence of the limits (1.7) and (1.9), which, though more complicated 
than the reflection positivity arguments, have the advantage that they hold 
for non-integer q >i 1 and can be used to establish additional properties. 
In particular, we use subadditivity to show left continuity of the inverse 
correlation length 1/~rree(fl) and upper semicontinuity of the inverse corre- 
lation length (2) 1/~wir(fl). We also use subadditivity arguments to prove that 

(2) (wir(fl) is equal to several other geometrical correlation lengths in the 
problem, one of which is the decay raty of the diameter of finite clusters in 
the wired measure--a quantity which should be easily accessible to numeri- 
cal measurement. 

All three correlation lengths coincide in the high-temperature regime, 
where their common value is often denoted by ~dis(fl)" In the low-tem- 
perature regime, we expect ~rrer oo. The nontrivial correlation length 
in this regime is often denoted by ~ord(fl)' Here, however, we see that for 
q/> 3, there are two a priori different nontrivial lengths, ~wir(fl)(l) and ~wir(/~).(2) 

Equations (1.4) and (1.5) immediately imply that 

( ])  (2) 
~wir(] ~) ~ ~wir(fl) (1.10) 

so that the correlation length ~(li~ of the symmetric state (i.e., symmetric 
with respect to Sq_ ~) is not smaller than those of the unsymmetric states. 
An interesting ~pen question is whether or not the inequality is strict. It is 
worth noting that in percolation, analogs of Cwir(X--y) and ~" "r - -  y )  in 
the absence of boundary conditions have equal exponential decay rates (7J, 
which here would imply equality of (~i~(fl) and (2) ~wir(fl). However, it is not 
at all clear whether the Potts models for q/> 3 should have analogous 
behavior. 
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We return finally to our original question, namely the discrepancy 
between the exact and numerical correlation lengths of two-dimensional 
Potts models with discontinuous transitions. Explicit calculations based on 
a mapping to the six-vertex model yielded a correlation length ~dis(Po) of 
the disordered phase at the self-dual point (6' z6. 24) Po which disagreed with 
previous numerical measurements (33" ~7) of the ordered correlation length 
at the transition point ~ord(flo) by roughly a factor of 2, suggesting the 
possible relation lord(rio)= �89 (z) A continuous transition analog of 
this relation is already known for both two-dimensional bond percolation, 
where ~(p)= �89  has been rigorously established for all P>Pc,  (71 
and the two-dimensional Ising magnet, where ~(fl)=~ ( f l )  has been 
established via exact solution for all P>flo (ref. 31; see also ref. 10). Here, 
as usual, p* is the dual inverse temperature. However, from our results dis- 
cussed above, we now know that the situation is more complicated in the 
q-state Ports model, q >/3, than it is in either percolation or the Ising 
magnet, since in the ordered phase the Potts model has two a priori dif- 
ferent correlation lengths. One of our principal results is a relation of the 
conjectured form in terms of the smaller ordered correlation length, ~:(2.) ~wlr" 

Our result follows from a dichotomy which we prove for all two- 
dimensional random cluster models with q i> 1. In addition to the conjec- 
tured relation, the dichotomy implies Widom scaling for Potts models with 
continuous transitions. Let free P~  (fl) be the percolation probabilty in the 
free-boundary-condition random cluster measure. Our dichotomy is: If 
pr~ee(fl.) = 0, then 

(21 1 :It 
~wir(fl)---~ _5~free(] ~ ) (1.11) 

whereas if p~ee(fl.) > 0, then 

~ free(] ~ ) =  ~wir(fl)(l) = ~wir(]~ ) ( 2 )  (1.12) 

In order to interpret the dichotomy, we supplement it with the two-dimen- 
sional relation 

e~r(fl) free * P~  ( f l ) = 0  (1.13) 

where e~r(fl) is the percolation probability in the wired measure, which is 
of course equal to the spontaneous magnetization M(fl). Note that (1.13) 
shows that P~ee(fl*)>0 implies M(f l )=0,  so that (1.12) is simply the 
equality of the three correlation lengths in the high-temperature regime, as 
mentioned earlier. 

Our more interesting corollaries follow from the first branch of the 
dichotomy, i.e., the duality relation (1.11). In order to see this, we 
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combine (1.13) with the obvious bound wir eoo (fl) >1 p~ee(fl) to obtain 
free free * 0 eoo (fl)e~o ( f l ) =  , so that Pr~ee(flo)=O. Since P~oee(fl *) is an increasing 

function of fl*, this in turn implies 

P~e(fl*) = 0 for all fl>~flo (1.14) 

Equation (1.14) implies in particular that froe Poo (fl) is left continuous at the 
self-dual point flo. Moreover, it means that that the first branch of the 
dichotomy [i.e., Eq. (1.11)] holds throughout the low-temperature phase 
fl >/flo. For  systems with first-order transitions, this implies the conjectured 
relation at flo: 

(2) 
~wir( f lo)  = l~ f ree ( f lo )  ( 1 . 1 5 )  

For systems with second-order transitions, (1.11 ) is a generalization of the 
aforementioned results on two-dimensional percolation (7) and the Ising 
magnetJ 31) In particular, it gives a strong form of Widom scaling as 
fl ~ flo: If ~free(fl* ) diverges with critical exponent v, ~ free(fl*) ~ ]fl* -- flo [ -- v 
as f l*Tf lo ,  (1.11) implies that (2) ~wir(fl) diverges with the same exponent: 

(2) - ~  ~wir(/?) ~ I/~-/?,l as flJ.flo with ~= v. 
As noted above, the interpretation (and in fact the proof) of the 

dichotomy (1.1 l) and (1.12) requires the relation (1.13), which we obtain 
as a special case of a general two-dimensional result of Gandolfi, Keane, 
and Russo (GKR). (~8) However, in order to apply the GKR theorem, we 
need to know that the free random measure is ergodic, a result which we 
establish in all dimensions. We prove ergodicity by introducing suitable 
DLR equations t8' 29) for the random cluster problem. Here the justification 
of the DLR equations is much more delicate than in standard spin systems 
due to the nonlocal nature of the random cluster weights: because of this 
nonlocality, the specification used to construct the DLR states is not 
quasilocal, and thus standard theorems do not apply. 

Before reviewing the organization of the paper, let us briefly discuss 
our methods. These methods are necessarily quite different from those used 
in the analysis of the Bernoulli percolation model, since the random cluster 
model lacks several properties which are used extensively in percolation 
--namely, independence of events occurring on fixed disjoint sets and the 
van den Berg-Kesten (BK) (3) inequality for events occurring on random 
disjoint sets. ,Moreover, the random cluster model has an additional 
feature--boundary conditions--which significantly complicates its analysis 
relative to the independent model  However, it is by actually focusing on 
the boundary conditions that we are able to circumvent the other dif- 
ficulties and in fact derive two correlation inequalities which we expect will 
be useful in many other contexts. We do this by noting that in many cases, 
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the events of interest carry with them boundary conditions which decouple 
them from other events and thus effectively overcome the coupling of the 
random cluster weights. This idea is formalized by introducing the notion 
of decoupling events. We use our decoupling events in formulating and 
proving two sets of inequalities which effectively replace independence and 
the BK inequality. The independence is replaced by a relation which resem- 
bles the FKG inequality, but contains two decoupling events and holds for 
a much larger class of events than the original FKG inequality--in par- 
ticular, for events which are neither increasing nor decreasing. The BK 
inequality is replaced by a relation which resembles the independent BK 
inequality but contains a decoupling event. Both inequalities hold for any 
FKG measure, and thus in particular for the free and wired random cluster 
measures with q >/1. 

The organization of this paper is as follows. In first two parts of Sec- 
tion 2, we review the necessary properties of the standard spin and random 
cluster representations of the Potts model. The third part of Section 2 con- 
tains our inequalities for decoupling events. In the last part of the section, 
we derive the DLR equation and establish ergodicity of the free measure. 
Section 3 is concerned with the covariance matrix. In the first part of the 
section, we derive the finite- and infinite-volume representations of the 
matrix with free and constant boundary conditions, in particular estab- 
lishing the infinite-volume limits of Zrree(x -- y), nn Zwir(X--y), and Cwir(X- y ) 
from their finite-volume analogs. The matrix is diagonalized in the second 
part of Section 3. Section 4 concerns the correlation lengths ~fre~, (tl~ and ~ w i r ,  

~t2~ In the first part of the section, we establish existence of the lengths Wit" 

using reflection positivity, as reviewed in the appendix. The second part of 
the section concerns alternative characterizations of ~r~, ~t9 and ~t2~ 

"~ w l r '  ~ w l r '  

proved via subadditivity arguments and our inequalities for decoupling 
events. In particular, we show that 1/(fre~ is left continuous and 1/~tw~ is 
upper semicontinuous; we prove that ~tw~i~ is the decay rate of Cw~r whenever 
the magnetization is positive; and we establish that ~l~ coincides with the 
decay rate of the diameter of finite clusters, as well as with the limiting 
decay rate of connectivity functions for clusters in boxes. Section 5 contains 
our proof of the two-dimensional dichotomy (1.11) and (1.12), as well as 
derivations of a few results on two-dimensional percolation probabilities. 
The first part of this section contains a discussion of the heuristics of the 
duality relation (1.11 ) in terms of the behavior of interfaces in.the system. 
In the second and third parts of the section, we prove upper and lower 
bounds of the form needed for the duality relation (1.11 ). Finally, in the 
fourth part of the section, we combine these upper and lower bounds with 
several results from Section 4 and the relation (1.13) to obtain our 
dichotomy. 
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Note  A d d e d .  After submission of this Paper, we learned that 
G. Grimmett  has simultaneously obtained results t2~) which parallel some of 
those in our Section 2.4. In particular, Grimmett  also introduces D L R  
equations and gives a very nice proof  that both the free and the wired 
measure are Gibbs states. He then draws some of  the same conclusions as 
we do in our  corollaries to Theorem 5.5. The emphasis and the main results 
of the two papers are, however, very different: while Grimmett  focuses on 
states of  the random cluster model, we focus on the decay of correlations 
in the random cluster model, and correlation inequalities for general F K G  
measures. 

2. PRELIMINARIES 

2.1. Definit ion of  the Spin Model 

We consider the q-states Potts  ferromagnet, a model with spins tr,. in 
the set S = { 0, 1 ..... q - 1 }, q >/1. In a finite volume A c Z d, the Hamiltonian 
with free boundary  conditions is 

Hfree(O'A) = - -  ~ (~(r ~ , ) - -  1) (2.1) 
<x,y) EB{A)  

where the sum goes over the set B(A) of all nearest neighbor pairs (x ,  y )  
for which both x and y lie in A. The Hamiltonian with c-boundary condi- 
tions, c ~ S = { 0, 1, ..., q -  1 }, is 

Hc(aA) = Hrree(O'A)-  ~,, (6(O'x, f l y ) -  1 (2.2) 
x ~ A , y ~ O A  

where a A = { x ~ A I d i s t ( x , A ) =  1} is the (outer) boundary  of  A. Using 
the label b for "free" or c e S, one introduces the partition function with 
boundary  condition b as 

Zo(A) = ~ e -pm~'') (2.3) 
GA 

where the sum runs over all configurations aA : A ~ S, x ~ ax, and fl is the 
inverse temperatures fl = 1/kB T. 

As usual, an observable A with support  s u p p A  is a function 
A: aA ---, C which does not depend on the spin variables tr,. for x r supp A. 
A local observable is an observable with a support supp A not depending 
on A. Expectation values of  a local observable A are defined as 

1 
(A)b.A =Zb(A ) ~,, A(o-A) e -p/4b(~') (2.4) 
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If A and ,4 are two local observables, one also considers the truncated 
expectation value defined by 

(A ; -~ )b ,A  = ( A A ) b , z - ( A ) o , a  (-4)b,a (2.5) 

For observables of the form 

Ap=exp (i(a,P)) =exp lix~s~p Ap axPx) 

where p is a function of finite support from Z d into ~ =  {0, 2~/q ..... 
2~z(q--1)/q}, the expectation values (Ap)f~,A are monotone increasing 
(i.e., nondecreasing) in A, while the expectation values (Ap)0, A are 
monotone decreasing in A by Griffiths' second inequality, ~9) as generalized 
by GinibreJ ~6) As a consequence, for b="free"  or b=O, the thermo- 
dynamic limit 

( A p ) b =  l i m  ( A p ) b ,  A 
A ~2zd 

(2.6) 

exists for all local observables of the form Ap = e ita'p) and hence for all local 
observables A. In (2.6), the limit may be taken through any increasing 
sequence of sets. Using the permutation symmetry of the Hamitonian (2.2), 
one concludes that the limit (2.6) exists for all boundary conditions b 
considered here (i.e., free or any constant boundary conditions). Also by 
Griffiths' second inequality, <~9" ~6) the limit (2.6) is translation invariant. 

The order parameter of the Potts model is the magnetization 

1 
M(fl) =_------7 (q6(gxo, 0 ) -  1)o 

t l - -  t 
(2.7) 

where Xo is an arbitrary point in Z a (recall that the infinite-volume states 
( " )b  are translation invariant). It is known that M(fl) is increasing in 
fl, t~6, 1) decreasing in q,t~) and that the infinite-volume states ( . ) c ,  c~S,  
are equal to ( ' )fr ,e if and only if M(fl)=O. ~'4 Defining the transition 
point 

/~, = inf{ fl I M(fl) >0} (2.8) 

we remark that it is believed that M(fl,) is increasing in q, and that 

qc = max{q ~ ~ [ M(fl,) = 0} (2.9) 

4 Actually, ref. 1 proved tha t  all infini te-volume Gibbs  states  are equal  to ( �9 ) fr~ if and  only 
if M(p)  = 0. 
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is 4 for d = 2  and 2 for d > 2 .  The fact that M(fl,)>0, i.e., the existence of 
a first-order phase transition, has been rigorously established for all d~> 2 
provided q is sufficiently large (ref. 25; see also refs. 27 and 28). 

2.2. The Random Cluster Representation: Review of Basic 
Properties 

It is often useful to reexpress the q-state Potts model as an integer 
value of a two-parameter interacting percolation model, the so-called 
random cluster model of Fortuin and Kasteleyn. (13) In order to set our 
notation and state the results we will use in the rest of this paper, we briefly 
review the derivation and some basic properties of the FK representation. 
The representation is defined in terms of configurations o9 t O -  {0, 1} Ba, 
where Ba=  {(x,y)px, yeZ  a} is the nearest-neighbor bond lattice. For 
subsets B c Ba, the configuration space is denoted by ~ s  = { 0, 1 } s. 

Let us start with the finite-volume partition funtion with free boundary 
conditions. We write the Gibbs factor exp[ -flHrree(aA)] as 

H efl(5(ax, ay)-  1 

( x , y )  ~B(A) 

and expand the product with the help of the identity 

eP(6(~"'~"l-l=(1-p)+pS(ax, ay), where p = l - e  -p (2.10) 

We identify each term of this expansion with a configuration o9 ~ ~s(A); co 
is chosen so that it is zero on those bonds for which the factor in the 
product is 1 - p ,  and one on those bonds for which the factor is p~(a.,., ay). 
Geometrically, we think of the bonds b = (x ,  y )  for which og(b) = 1 as 
occupied or ordered, and those for which og(b) = 0 as vacant or disordered. 
With a slight abuse of notation, we sometimes use the symbol co to denote 
the set of occupied bonds in B(A), and ogc to denote the set of empty bonds 
in B(A); see, e.g., (2.11) below. 

Rewriting the Gibbs factor in expanded form, we obtain 

Zfree(A)= 2 ~'.(1-P)l~ I~ I-I 5(ax, a:,) (2.11) 
a)e~2B(A) o.t ( x , y )  ea~ 

Evaluating the sum over aA, we pick up a factor q for each connected com- 
ponent of the graph (A, o9) (regarding isolated points as separate clusters). 
Denoting the number of clusters in this graph by # (o9), we find 

Zfree(A) = ~ (1 __p)lCOqpl~ol q~(O~) (2.12) 
mea'2g(A) 



1246 Borgs and Chayes 

It is an easy exercise to generalize (2.12) to the expectations of local 
observables A = A(g). One obtains 

where 

<A>rr~r ~, Grrr Errer (2.13) 
co e -Q~, I )  

1 
Grree. A(CO) = Zrre~(A) ( 1 _p ) l ' q  pl ' l  q #c~ol (2.14) 

is the weight of the configuration co, while Err~e(" [co) is an average over 
spins, with the spins constrained to be constant on each connected cluster 
of co and with values for different clusters being chosen uniformly from 
{ 0, 1 ..... q -  1 }. We remark that for the purposes of interpreting expecta- 
tions of this sort, it is often convenient to consider the joint distribution on 
the spin and bond variables with weights given by the terms in (2.11), as 
introduced implicitly in ref. 37 and explicitly in ref. 9. In terms of this 
distribution, the expectation Efree ( �9 Ico) is an average over the conditional 
distribution of spins, given the bond variables. 

For constant boundary conditions, one obtains a similar representa- 
tion, with the following differences (as noted in ref. 1 ): 

(a) The set B(A) is replaced by the set B+(A) of all nearest neighbor 
pairs (x ,  y )  for which at least one of the two points x and y lies 
in A. 

(b) The points of the boundary OA are regarded as preconnected or 
wired, in the sense that these points are taken to be lying in one 
cluster. This of course modifies the value of # (co). 

(c) The expectation Err~e(A[co) in (2.14) is replaced by E,.(A[co), 
where the average is computed with the additional constraint 
that spins in clusters connected to the boundary now only 
assume the value ax = c. 

We have 

where 

(A)c.A = ~ Gwir, A(CO) E,.(A [co) (2.15) 
~ ~ -QB +(.,I ) 

1 
Gwir, A(CO) = Zwir(A ~ ( 1 _p)l~,q plO, I q ~(o~) (2.16) 

and Zwir = ~c~ sZc = qZo. 
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We denote by Prr~e.A(") and ,Uwir, A( '  ) the finite-volume measures 
defined by the weights (2.14) and (2.16), respectively. 

R e m a r k .  The measures Pr~.A( " ) and Pwi~. J~(" ) are defined on the 
probability spaces (f2s~a), ~'s,(A)), and (QB+IA),O~S+(A)) respectively. (In 
general, we use o~ to denote the (r-algebra ge.nerated by cylinder events 
A c g2s. ) It is sometimes convenient to extend these to measures on the full 
space (/2, ~-) by declaring all bonds in Ba\B(A) to be vacant for/zr~ee ' A(" ), 
and all bonds in Bd\B+(A) to be occupied for #wir, A(" ). 

An important  property of the FK representation is that it obeys the 
H a r r i s - F K G  inequality. This inequality, first proved for percolation in 
ref. 22 and proved for a large class of models in ref. 14, was established for 
the q >~ 1 random cluster representation in ref. 11 (see also ref. 1). We begin 
with the standard: 

Def i n i t i on  2.1. Consider the natural partial order on bond con- 
figurations c o e d s ,  B c  Bd, namely co<(co' if Co(b)= 1 = c o ' ( b ) =  1. A func- 
tion f " /~s  -+ R is said to be increasing if it is nondecreasing with respect to 
this partial order, i.e., f(~o)~<f(co') for all co-<co'. An event is said to be 
increasing if its indicator is an increasing function. Similarly, a function f 
is decreasing if the function - f  is increasing, and an event is decreasing if 
its complement  is increasing. 

A measure ~t on (/2B, ~B) is said to be an FKG measure if it obeys the 
so-called H a r r i s - F K G  inequality 

p(A~ c~ Az) ~>p(AI) p(A2) (2.17) 

for all pairs of increasing events A ~, A2 ff ~B- It is said to be a strong FKG 
measure if for each cylinder event C e  ~s ,  the conditional measure/~( .  [C) 
is an F K G  measure. Finally, a measure /~ on ((2B, ,~-B) is said to FKG 
dom#~ate a measure v on (f2s, o~s), denoted by 

v <.it  
FKG 

if v(A) <~:t(A) for all increasing events A Eo~B. 

P r o p o s i t i o n  2.2. <~' 1) Let q>/1. Then the finite-volume free and 
wired FK measures/xrr~, A and/twit" A are strong F K G  measures. 

Consequences (see, e.g., ref. 1) 

1. The finite-volume measures are monotonic  in the volume: 

Pfre~.A ~< /lrrr if A c A '  (2.18) 
FKG 
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and 

~wir,  A ~ ~wir,  A' if A c A' 
FKG 

from which it follows that  the infinite-volume measures 

(2.19) 

/*fre,(" ) =  l i m  p f ~ e o ~  , a(" ) (2.20) 

and 

J / w i r (  " ) = limJ~wi~, A(" ) (2.21) 

exist for all mono tone  local functions, and hence for all local functions. 
Fur thermore,  these infinite-volume measures are translat ion invariant  and 
inherit the strong F K G  property.  

2. The wired measures F K G  dominate  the free measures,  i.e., 

/'/free, A "~< l/wir, A (2.22) 
FKG 

and 

~free ~ ]-~wir (2.23) 
FKG 

Another  useful proper ty  of  these measures is that  they have finite 
energy, a notion introduced by Newman  and Schulman. t32) 

Definit ion 2.3 .  Let B c Bd, IBI < oo, and $~DB a configuration 
on B. If  co e l2  is a configuration on the full space, let ~b(co) be the con- 
figuration which agrees with ~b on B and with co on Be: 

~(co)(b)-- ~b(b), b ~ B  
(co(b), b ~ B c 

Finally, i fA  c O  is an event, let ~b(A) = {$(co)lco cA} .  The measure / t  on D 
is said to have finite energy if for every finite B c Bd and for every ~b e t2s,  

#(A) > 0 ~ a ( r  > 0 

It  is easy to see that  finite energy is equivalent to the statement: For  
each bond b, the conditional probabil i ty  of  the event that  b is occupied, 
given the configuration on all the other bonds, is nontrivial: 

0 < lz(co(b)=llco(b),b~b) < 1 
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For the free and wired measures, it was observed in ref. 1 that this prob- 
ability can be explicitly calculated: 

/z(co(h) = 1 leo(b), b 4: b) 

{ ~  if the endpoints of b are connected, 

= regardless of co(b) (2.24) 

P otherwise 
+q(1 - p )  

where /~=/~rree or /~wir. Thus for all q>~l and all p4:0,  1, the random 
cluster measures/~f~e~ and/~wi~ have finite energy. Note that this is not true 
in all random cluster measures: Boundary conditions can impose con- 
straints which exclude certain configurations. 

Given stationarity and finite energy, it follows immediately from a 
general result of Burton and Keane ~5~ that the infinite cluster is unique: 

Proposition2.4. Foranyq~> 1 a n d a n y p e ( 0 ,  1), the free and wired 
random cluster states have at most one infinite cluster with probability one. 

Since the Burton and Keane theorem requires only stationarity, it 
applies also to nonextremal states, and therefore allows the possibility of a 
convex combination of states with zero and one infinite cluster. If, in addi- 
tion, the measures are ergodic, then at any given value of p, there is either 

zero or one infinite cluster with probability one. This is presumably the 
case for both the free and wired measures, although we only prove it for 
the free state (see Section 2.4). Of course, ergodicity does not exclude the 
possibility that, for a fixed value of p, the wired state has an infinite cluster 
and the free state does not--indeed, for q large enough, this is exactly what 
happens at the transition point. 

2.3. Two Useful Inequalities 

There are three main technical tools for factoring intersections of 
events in standard Bernoulli percolation: the FKG inequality for monotone 
events, independence for events which occur on nonrandom disjoint sets, 
and the van den Berg-Kesten (3~ inequality for events which occur on ran- 
dom disjoint gets. As discussed in the last section, the free and wired 
random cluster measures obey an FKG inequality. However, due to the 
nonlocality of the weights (2.14) and (2.16), they satisfy neither an inde- 
pendence condition nor a BK inequality. Indeed, it is clear from (2.24) that 
the probability of even a simple bond occupation event can be enhanced by 
the occurrence of some other event at an arbitrarily long distance from the 

822/82/5-6-3 
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bond in question. In this subsection, we provide alternatives to inde- 
pendence and the BK inequality for many events of interest in a general 
setting. 

As a substitute for independence of events occurring on nonrandom 
disjoint sets, we might try to use the F K G  inequality as a bound, provided 
that the desired events are monotone. However, many of the events we care 
about--especially in the low-temperature phase--are  not monotone. For 
example, the probability of a connection via finite clusters is the intersec- 
tion of an increasing and a decreasing event. The presence of boundary 
conditions, which very often complicates proofs in the random cluster 
model, can be used to our advantage here. Certain boundary conditions 
decouple a set from its exterior. Many events of interest carry with them 
decoupling boundary conditions for the (random) sets on which they 
occur. We make this notion precise by introducing the definition of a 
decoupling event below. It turns out that, given this definition, it is possible 
to prove a general inequality which is similar to the F K G  inequality and 
which replaces independence for events whose random boundaries occur 
within disjoint nonrandom sets. Our inequality holds for any F K G  
measure and for events which are intersections of arbitrary events with 
monotone decoupling events. 

As explained above, the BK inequality is certainly not true in general 
for the random cluster model-- there are numerous examples in which the 
occurrence of one event enhances the occurrence of another. However, this 
enhancement cannot take place if the two events are decoupled from one 
another, in a sense to be made precise in the definition below. Thus we 
prove a second inequality, which replaces the BK inequality of Bernoulli 
percolation, and which holds for the intersection of an arbitrary event, an 
increasing event, and a decreasing decoupling event. 

In Proposition 2.6 below, we actually present two versions of each of 
our inequalities: one which is easy to formulate (but not that useful), and 
a more involved one which is of the form needed for our applications. All 
of these inequalities hold for general F K G  measures. We also give a useful 
corollary that concerns monotonicity in the volume and F K G  domination 
in the random cluster model. We begin with the definition of a decoupling 
event. 

Def in i t ion  2.5. Given a probability space (O, ~ ,  p) and events A,,  
A2, D e ~ ,  we say that D is a decoupling event for A~ and A2, if 

~t(A, nA2ID) =/./(A I ID)It(A2ID) (2.25) 

For brevity, we will sometimes say D decouples A1 from A 2. 
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While this definition makes sense in any probability space, it may be 
useful to illustrate it with a typical example from the random cluster model. 
Consider a set B c Bd such that Bd\B = B~ u B2, B ] n  B2 = ~ .  The event 
that the bonds of B are vacant then decouples any event A~ ~ ~ u s from 
any event A2 e ~s,. ~ ~. In this paper, such decoupling events typically occur 
when B is the boundary of a finite occupied cluster. Returning to the 
general context of Definition 2.5, we have: 

Proposition 2.6. Let (t2, ~ ,  p) be a probability space with 12 par- 
tially ordered and p an FKG measure with respect to this order. Then the 
following inequalities hold. 

1. The First Inequality: 

(i) Consider two arbitrary events A], A2 ~,~, and two increasing 
(or two decreasing) events D], D2 e ~ such that DI decouples A~ from D2 
while D2 decouples A2 from A1 c~D1. Then El =A1 n D l  and E2=A2 c~D2 
obey the inequality 

l~(Ei n E,_) >>, lt(E] )/t(E2) (2.26) 

(ii) More generally, let E;, i = 1, 2, be disjoint unions of the form 

Ei = U Ai.knDi. k (2.27) 
kcKi  

where Ki are countable index sets, Ai.k ~,~ are arbitrary events, D~.k ~,~ 
are all increasing (or all decreasing) events, and D~.k decouples A ], k from 
D2. k, while Dz.k, decouples A2.k, from A~.kc~D~.k for all k~K] and 
k 'e  K,_. Then E, and E2 obey the inequality (2.26). 

2. The Second Inequality: 

(i) Let A~ ~ be an increasing event, A2 ~-~ be arbitrary, and 
D ~  be a decreasing event which decouples A] from A2. Then 

/a(A~ nDnA2)<~l.t(A~)lt(Dc~A2)<~it(At)Iz(A2) (2.28) 

(ii) More generally let A~ ~ be an increasing event, and let 
A2 e ~ and D E ~ be events for which D c~ A2 can be rewritten as a dis- 
joint union of the form (2.27), with O2, k decreasing events that decouple A] 
from A2.k for all k~K2. Then the bound (2.28) remains valid. 

Proof. Rewriting the left hand side of (2.26) as 

lt(D2),u(AI n D i  nA21D2) 
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and using the fact that D 2 d e c o u p l e s  A 2 from AI riD1, we obtain 

/.t(Al n D t  nA2  c~D2)=/t(A1 riD1 nD2)~(A21D2) 

Applying the same procedure to the term p(A~ n D, c~ D2) and using the 
decoupling event D i, W e get 

p(A l n Di h A 2  n D,_)=p(Dt n D2) lt(Al [D,) I.t(A2ID2) 

which by the F KG inequality (2.17) implies (2.26). Part l(ii) of the 
proposition then follows from the countable additivity of the measure p 
and the fact that the events E~ and E2 are disjoint unions of events for 
which (2.26) is valid. 

In order to prove 2(i), we observe that 

It(Al n D ~ A 2 ) = p ( D ) p ( A l  ID)p(A2[D) 

by the definition of conditional expectations and (2.25). Using the F K G  
inequality (2.17) to bound/1(A1 [D) by I.t(Ai), we find that the bound (2.28) 
now follows. Again, 2(ii) follows from 2(i) and the countable additivity of 
the measure. II 

R e ma rk .  It is clear from the above proof that the inequality (2.26) 
is reversed if one of the two decoupling events DI and D2 is increasing and 
the other is decreasing. Similarly, the first inequality in (2.28) is reversed if 
A~ and D are both decreasing or both increasing. 

Corollary. Let q>~ 1, AcT/d, and b = w i r  or free. Consider the 
random cluster measure Itb. A and the corresponding probability space 
(t2sb, ~sb, Pb. ,~), where Bb = B+(A) if b = wir and Bb = B(A) if b = free. Let 
B c  Bb, and let E be an event of the form (2.27), where the index set is the 
set of all subsets of B, i.e., 

E =  U A s n D s  
S o B  

with As  e,~s~ arbitrary events, and D s ~ s h  decreasing events that 
decouple A s from all events in ~BbXn" If the events D s are decoupling 
events with respect to the measure Prree. A, then 

I.trrer ) provided A' ~ A  and B ~ B ( A ' )  (2.29) 

If the events D s are decoupling events with respect to the measure Pwir. ,1, 
then 

/twir. A,(E)~</twir.,4(E ) provided A ' c A  and B c B + ( A  ') (2.30) 
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and 

].Zwir, A(E) <-~[dfree, A(E ) provided B c  B(A) (2.31) 

Proof Let AI be the event that all bonds in B(A)\B(A') are vacant. 
Then A 1 ~ ~S~A)\S~A') ~ ~n~A)Xs is decoupled from As by the event D s. Since 
both A 1 and D s are decreasing events, 

#rreo. A(EI A I) ~> Prroe. ,~(E) 

by the remark following the proof of Proposition 2.6. Observing that 
/t free. ,v(E) =/~ tree. A(E J A i ), this proves (2.29). Defining A ~ as the event that 
all bonds in B+(A)\B+(A') are occupied [all bonds in B(A)+\B(A) are 
vacant],  we prove the remaining two inequalities in the same way. | 

In order to illustrate the utility of Proposition 2.6, we conclude this 
subsection with applications of each of the two inequalities. These applica- 
tions will be needed in our subsequent analysis and may be of independent 
interest. As usual, we denote by C(x)= C(x; co) the set of occupied bonds 
connected to x in the configuration o9, and define {x *-+y} as the event that 
x is connected to y by a finite path of occupied bonds. We also define, for 

tin each finite set A c7/a  and any two points x , y e A ,  the event Rx.y(A ) that 
x and y are connected by a cluster C(x)c  B(A). 

Proposition 2.7. Let q/> 1, A c77 a be finite or infinite, and let 
]'/ =,//wir, A or/.2free ̀ A' Then for all finite A1, Az c A with B+(A1) n B(A2) = 
B(AI )nB+(A2)=~ ,  and all x , y ~ A l , z ,  w~A2, 

Rt in  tin >~ tin ~( .,. y(A 1) c~ R__. ,,.(A2)) ~-,u(R,..,,(AI)) ~(R~?,,.(A2)) 

Proposition 2.8. Let q >/1, A c 71 a be finite, and let / t  =/'/wir. A or 
/~rree. A- Let x,y, z, weA,  and let O be the event {xq-~z} n {yq-, w}. Then 

~,({x,--,y} n D c ~  {z,--,w})<,~,(x,--,y)u(z,--,w) 

Clearly, Proposition 2.7 is an application of the first inequality in 
Proposition 2.6---the connections in question occur on fixed disjoint sets, 
B(A i) and B(A2), and due to the finiteness of the clusters, each connection 
carries its own decoupling event. Note that if B+(A~)nB+(A2)=~,  
then in percolation, the probability of the intersection of the events in 
Proposition 2.7 would factor exactly. Here our first inequality replaces this 
independence. In fact, given that the decoupling events can overlap, 
Proposition 2.7 gives a new result even in the case of percolation. Proposi- 
tion 2.8 is an application of the second inequality in Proposition 2 . ~ - t he  
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connections in question occur on random disjoint sets separated by the 
decoupling event D. This obviously replaces the BK inequality. Note that, 
in marked contrast to percolation, the inequality would fail to hold if we 
removed the decoupling event. 

Proof of Proposition 2.7. Introducing ~ as the family of all sets 
B cB(A~) such that B connects x to y, and ~,_ as the family of all 

fin fin R_ ,,.(A,) as BcB(A2) connecting z to w, we decompose R.,.y(A~) and ~. _ 

fin Rx, y(A')= U {C(x)=B}= U { c o . = l } ( h { c o 0 * . - - 0 }  
B E l l  BG~$1 

and 
f in R ..... (A2) = U {C(z)=B}= U {cos= l}n{coo*s  =0} 

Here cos is the configuration co restricted to the set B and O*B is the 
set of all bonds in Bd\B which are connected to B. Observing that for 
all B e ~ ,  and all B s ~ 2 ,  Di.B={coo.s =0} decouples A , . s =  {cos= l} 
from all events in o~g~s+(.~,_), while D2.~={coo.~=0} decouples 
A 2 . ~ = { c o ~ = l  } from all events in o~v ~o~s.lA,i, one easily verifies that 

fin fin R_ ..(A,) are Rx, y(Al) and .. _ events of the form considered in part  l(ii) of 
Proposition 2.6. 

Proof of Proposition 2.8. Defining A~ = {x ~ y }  and A2 = {z ~ w}, 
we rewrite A t as the disjoint union A~ ~ wAi~ r, with 

A~"= A, c~ {x q-~OA} 
and 

Aline= AI n {x+--~OA} 

Notice that/~r~. A(A~ "r) = 0, since with free boundary conditions, x cannot 
be connected to the outer boundary OA = {x r A I dist(x, A) = 1 }. Introduc- 
ing the family ~,  of sets BcB(A)  that connect x to y but do not connect 
x to z or y to w, we then decompose A~" c~ D as 

BEll 

Observing that for all B E ~ ,  the event {coa.n=0} decouples A2 from the 
event (co~ = 1 }, we obtain 

t ,Jf in /~tA, n D n A2) ~/~(A~ n c~ D)/~(A2) ~/~(A~")/z(A2) 

where we have used the second inequality of Proposition 2.6 in the first 
step. This completes the proof for the free measure. 
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In order to complete the proof for the wired measure, we will show 

~,(A~? r n D n A2) ~ ( A ~ ?  ~) F,(A 2) 

To this end, we define 

An"=A, n {z <-/*OA} 2 

Since the wiring would connect two points if they were both connected to 
the boundary, we have 

Ai~r nDnA2=Ai~r nDnA~" 

with probability one with respect to the wired measure. Applying the same 
strategy as before, we then obtain 

].I(A il nf ~ D n Az) = ]A(A il nf n D n A~") ~< At(Air nr) lt(A~") ~</a(Ait "r) lt(A2) 

as claimed, l 

Remarks. 1. As can be seen from the above proof, the finite- 
volume free measure actually obeys the stronger inequality 

[Afree. A({X+-'~y } N O N  {Z <--~ W} ) .~/Arree, A({X<--.-~y } NO)[.2free, A(Z~'+W ) 

2. Using uniqueness of the infinite cluster ~s) (see also Proposition 2.4 
above), it follows immediately that Ail "r n D n A2 = All "r n D n A, n" with 
probability one with respect to the infinite-volume measures/~rr,, and #wit- 
Hence Proposition 2.8 holds for these measures as well. 

2.4. DLR Equat ions and Sta tes  of the  Random Cluster  M o d e l  

In this subsection, we introduce the notion of (unconstrained) DLR 
states for the random cluster model, prove that the free measure is such a 
state, and use this to show that it is ergodic--a  property we will need in 
our subsequent analysis. It is usually straightforward to establish such 
results by invoking the general theory of Gibbs states (see, e.g., refs. 34 and 
15). However, the general theory requires that the finite-volume expecta- 
tions used to construct the DLR states are quasilocal functions of the 
boundary conaitions, a property which fails to hold here due to the nonlo- 
cality of the random cluster weights. Thus the DLR equation has to be 
established explicitly. 

We start by defining finite-volume measures with general uncon- 
strained boundary conditions---conditions which permit any component to 
be connected to any other component. The set of states generated by all 
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such boundary conditions is quite natural in the random cluster model. 
A larger class including constrained states will be discussed briefly at the 
end of this subsection. Each measure is defined on an arbitrary finite set of 
bonds B c Bd with boundary 

OB= {X�9 3y, z � 9  ( x , y }  � 9  ( x , z )  � 9  c} 

We specify the boundary condition by introducing a wiring diagram W, 
which is a disjoint partition of OB into n w =  1 ..... IOnl components: 

n IV 
W= { WI ..... W,,~} with aB = U w;, wi c3 wj = ~ if i :~j 

We denote by ~tV(OB) the set of all such wiring diagrams, i.e., the set 
of all disjoint partitions of OB. Each component W; of the wiring diagram 
W is considered to be preconnected or wired, so that all bonds b � 9  
connected to points of W; are regarded as being connected to each other. 
The number of components #(09) is then computed as usual. The random 
cluster weight 

1 
Gw.s(co) =Zw(B-~ (1 _p)lOJq pl,ol q.(,o) (2.32) 

defines the finite-volume measure # w. s( �9 ). Denoting by Wfree the partition 
with nw= IOBI components and by Wwir the partition with only a single 
component, we see that 

//free. A(" )=]"/l'Vfree. B{/I)(' )' ~wir. A(" )=]'lWwir. S+(A)(" ) 

so that the free and (fully) wired measures are just special cases o f #  w. n ( '  ). 
Note that among the measures # w. n( �9 ) are some that cannot be obtained 
as transforms of any finite-volume states in the spin system, namely those 
in which W has more than q components W~ with I W;I/> 2. 

There is a natural partial order on the set ~r If IV, W' �9 ~I/'(OB), 
we say that W' is coarser than IV, denoted by W' >- IV, if for each W~ �9 W' 
there exist IV,.,, W~, ..... W~,,, �9 W such that W~ = U~'= ~ W;j. Notice that Wrree 
is the least coarse and W ~  is the most coarse of all wiring diagrams. 
Moreover, if W' >- W then # w,. s dominates/t  w. B in the sense of F K G  (see 
Definition 2.1 above). 

Each configuration co �9 t2 induces a wiring diagram on each finite set 
BCBa. The induced wirhTg diagram W(B, og) is a partition into com- 
ponents of OB, each of which is connected using occupied bonds in tour. 
Thus each o9 �9 s'2 gives rise to a sequence of induced finite-volume measures 
ltw~.,o).B for any increasing sequence of sets B ~  1~ a. Henceforth we will 
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extend the induced finite-volume measure It w(s,,o), s to a measure on the 
full space (O, ~-) by declaring all bonds in B c to have the configuration 
specified by co. [Compare  this to our extensions of of Itrree, A and Itw~,A 
discussed in the remark following Eq. (2.16).] Using the form (2.32) of 
the weights Gw, B and our definition of induced wiring diagrams, it is 
straightforward to check that the (extended) induced finite-volume 
measures obey the consistency condition 

It w(s. ,o). s ( A  ) = ~ It w(s, co), s(dCo) It w~.  ~), ~(A)  (2.33) 

for all local events A e ~-, any finite set B, and all J~ c B. 
For each finite B, we may define the function lrs: ( ~ ,  I 2 ) ~  R by 

ten(Alto) =itw~B.,o).n(A).  Since the family ? = { n s l B c  Ba, IBI < oo} is a set 
of proper probability kernels obeying the consistency condition (2.33), ? is 
a specif ication in the sense of ref. 34. 

A DLR equation c8' 29) is just an infinite-volume analog of a consistency 
condition like (2.33). Thus we introduce the (unconstrained) DLR equa- 
tion for an infinite-volume random cluster state It: 

I t (A)  = f It(dco) It w(s. ~,), B(A)  (2.34) 

where A e ~ is any local observable and B c Bd is any finite set. As usual, 
the DLR equation (2.34)--if it holds--allows us to write the infinite- 
volume expectation of A as an average over finite-volume expectations. It 
is closed in the sense that the average is computed with respect to the given 
measure It. Note that this is different from the equation for states given in 
ref. 1, where a random cluster measure was obtained as a transform of a 
measure obeying the DLR equation in the spin system. On the other hand, 
a DLR equation was implicit in the discussion of states in ref. 20; there, 
however, the question of existence of solutions to the equation was not 
addressed. 

Let us denote the set of states obeying (2.34) by ~=f#(~,), where as 
above ), denotes the specification. States It e f# will be called D L R  states or 
Gibbs states. A priori  it is not clear whether fg is nonempty, i.e., whether 
there exists any It satsifying (2.34). One might try to construct such a p as 
a subsequential limit of finite-volume measures p w. s - -which  clearly exists 
by compactness--but  the question of whether such a limit obeys (2.34) 
involves a delicate interchange of limits. The theory of Gibbs states (34" 15) 
provides general conditions under which (2.34) is satisfied, one of which is 
quasilocality of the specification. 
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A function f is quasilocal if it can be approximated in the supremum 
norm by local functions, a property which is equivalent (ref. 15, Remark 
2.21) to the statement 

sup If(oJ) - f ( r / ) l  -~ 0 as B--*Bd 
t.~, r l : t .OB~qB 

A specification {zcs} is quasilocal if the functions riB(A, �9 ) are quasilocal 
for all finite B ~ Bd and all local events A ~ ~-. 

Unfortunately, due to nonlocality of the weights Gw, s, our specifica- 
tion is not quasilocal. For example, the probability of the simple event 
{o~(b) = 1}, conditioned on the bonds in Bd\{b},  changes discontinuously 
depending on whether or not the endpoints of b are connected by a path 
(of any length) in O~d\{b } [see eq. (2.24)]. The general theory of Gibbs 
states therefore cannot be applied here. However, we can verify the DLR 
equation (2.34) explicitly in the case of the free measure: 

Proposition 2.9. For all q~> 1 and 0~<fl~< c~,/tr~ ~ff. 

Proof. Let B = Ba be a finite set and A E ~ a local event. We wish 
to show 

# r~(A) = ~/-t r~(do~) # w~s. o~. s(A) (2.35) 

By the finite-volume consistency condition (2.33) and convergence of the 
finite-volume measures (2.20), it suffices to prove 

lim ; lafre~.A(aco) #w~s.~,,.s(A)=~ #r~e~(do~) ltw, s.,o,.B(A ) (2.36) 
A ~ Z d  

Inserting the partition of unity Z w~ ~rtoB)~lwls, o~= w} = 1 into (2.36) and 
noting that # w. s(A) is independent of A, we see that it is enough to prove 

lim #rree. A({W(B, co)=W})=Itr~({W(B,o~)=W}) (2.37) 
A ~ Zd 

i.e., that the probability of a given wiring diagram converges. 
Let R,q(B c) denote the event that all sites within the set IV,. are con- 

nected to each other via bonds in B c, let Sw(B ~) = (']w,~ wRw,(BC), and let 
Nw,, ~)(B C) denote the event that none of the sites in W~ is connected to 
any of the sites in Wj via bonds in B ~. Then 

{ W(B,  co) = w }  = S w ( B  c) n ["] Nwi, wj(B c) 
wi, wjE W 

(2.38) 
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By inclusion-exclusion, it is not hard to show that if B(A)~ B, then 

Itrree,~4({W(B,o))=W})= Y'. ka,(W)prre~.A(S~,(B")) (2.39) 
IT,'+ W(OB): 

where the sum is over I~ coarser than W I-see the definition a paragraph 
below (2.32)], and ka,(W) �9 Z are computable coefficients with kw(W) = 1. 
Thus by (2.37)-(2.39), we only need to show that for all I,V�9 ~q/(aB) 

lim It, .... ,(S~(BC))=pr,~(Sw(BC)) (2.40) 
A ~ Z d  

Let l ~ � 9  ~/ ' (aB) and choose A such that B(A)~ B. Due to the free bound- 
ary conditions on aA, the argument of the left-hand side of (2.40) can be 
rewritten as 

Prrr A(Sw(B")) = It r,e~. A(Scv(B(A)\B)) (2.41) 

Approximating the wiring event SMB") by local events, we see that the 
r~ght hand side of (2.40) is actually a double limit: 

Itr~(Sw(BC))= lim Itfr~(See(B(A')\B)) 
A'~7/d  

= lim lim Itrree. A(Sf-v(B(A')\B)) (2.42) 
A ' ~ Z , t  A ~ T d  

Thus by (2.40)-(2.42), we must show 

lim Itr~,/(Sa,(B(A)\B))= lim lim Itr~e,A(Se/(B(A')\B))(2.43) 
A ~ Z d  A ' ~ Z d  A ~ Z d  

In order to prove this, we note that for all A' = A 

,/'/free, A(Sa,(B(A')\B)) <~itr~er A(Sw(B(A')\B) ) <~itrr~:, ,(Sw(B(A)\B)) 
(2.44) 

where the first inequality follows from the monotonicity property (2.18) 
and the second is just a consequence of Sw(B(A')\B)cSw(B(A)NB) if 
A' c A .  Taking the limits A--, Za and A ' ~  Za, we find that Eq. (2.44) 
yields (2.43) and hence (2.35). I 

RemarkK.  1. The only property of the free measure that was used 
to reduce the proposition to Eq. (2.40) was convergence of the finite- 
volume measures. Thus the wired analog of (2.40)--i.e. convergence of the 
probability of the wiring events Sw(B ~) with respect to the finite-volume 
wired measures--is sufficient to prove It~,~r �9 ft. Unfortunately, however, 
Itwir does not have nice monotonicity properties like those in Eq (2.44). 
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2. Equation (2.43) of the proof is our first example of the problem of 
interchange of limits which arises again in Proposition 3.4 and in many 
theorems in Section 4. Whenever we deal with the infinite-volume limit of 
an event which is not confined to a finite volume, we encounter a double 
limit--one for the construction of the infinite-volume measure and the 
other for the approximation of the given event by local events. Hence the 
problem of interchange of limits. This problem does not arise in percola- 
tion because the measure is defined directly in the infinite-volume limit. 
Here, when we can deal with interchange, it is usually accomplished via 
either simple F KG monotonicity [Eqs. (2.18) and (2.19)] or our mono- 
tonicity involving decoupling events (corollary to Proposition 2.6). 

It is now straightforward to show that Prr~ is ergodic. We have: 

T h e o r e m  2.10. Let H be any nontrivial subgroup of the translation 
group and let f#o = g be the set of all H-invariant DLR states. Then for all 
q/> I, Pfr~ is extremal in go and hence is H-ergodic. 

Proof. As noted earlier, Wf~e~ is the least coarse of all wiring 
diagrams, so that 

pm,~.SV~Gltw, s for all W~'fF'(OB) (2.45) 

and thus by convergence of the measure (2.20) 

Itrr~e <~ It for all It e g 
FKG 

(2.46) 

Given that /trrer e f t  (Proposition 2.9), it follows immediately from (2.46) 
that/~rrce is extremai in g and hence also in go (since l tr~ is of course 
H-invariant). Ergodicity then follows from the fact that all extremal 
measures in go are H-ergodic (ref. 34, Theorem 4.1). II 

R e ma rks .  1. FKG Ordering of  States: Using the fact that the 
wired state is the coarsest of all states, we have analogs of (2.45) and (2.46) 
for the wired measure, and thus 

]'/free ~ P ~ ,/'/wir for all / t e g  (2.47) 
FKG FKG 

Note of course that this does not imply Pwir e ft. 

2. The Size of  if: By Proposition 2.9, Prree e g ,  so that Igl >/1 for all 
q>_-1 and all inverse temperatures ft. Let p~r(fl) denote the percolation 
probability in the wired measure, which of course coincides with the 
magnetization for integer q. According to a result of ref. 1 (Theorem A.2), 
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whenever p~r(fl)= 0 (i.e., fl ~< fl, for systems with second-order transitions 
and fl<fl, for those with first-order transitions) /~free=pwir, SO that by 
(2.47) and Proposition 2.9, [ i[  = 1. It is expected that [i[ = 1 also for 
fl > fl,, but there are only incomplete results for d = 2: The two-dimensional 
dual of the result of ref. 1 says P~(fl*)= 0 implies ]i[  = 1, i.e. there is one 
state for fl>fl*, which presumably coincides with 8, (see also ref. 20). 
However, one expects more states at the transition point in systems with 
first-order transitions. For q large enough and d- -2 ,  convergent expan- 
sions (25"271 can be used to show that there are q + 1 distinct translation- 
invariant spin states (which transform into two distinct translation- 
invariant random cluster states--the free and the wired). There are 
presumably no non-translation-invariant states. Thus we expect I t [  = 2 for 
fl = fl, and q large enough in d = 2. In three dimensions, convergent expan- 
sions 13~ can be used to show that for q large enough, in addition to the 
translation-invariant states discussed above, there are infinitely many non- 
translation-invariant "Dobrushin-type" states corresponding here to states 
constructed from wiring diagrams which coincide with W,,~ above a certain 
hyperplane and with Wrree below that plane. We expect that these expan- 
sions can also be used to show that these non-translation-invariant states 
satisfy our DLR equation (2.34), so that at fl=fl,, [i[ = oo for q large 
enough in d >1 3, in contrast to the conjecture of ref. 20. 

3. States with Constraints: In the remark above, we mentioned 
"Dobrushin-type" states which we expect to be in i ;  these states were con- 
structed from a combination of wired and free boundary conditions. There 
are, however, many Dobrushin-type states in the spin system whose trans- 
forms are not in i f--namely,  mixed states in which various components of 
the boundary have different values of the spin. In the random cluster 
model, these correspond to states with constraints----certain components 
cannot be connected to other components. Therefore, in order to formulate 
DLR equations for these states, one has to supplement our wiring 
diagrams with some notion of constraints. While this is possible for 
individual finite-volume states, it is not clear how constraints should be 
induced by a given configuration m e/2, nor whether the resulting measures 
would obey even finite-volume consistency conditions. 

3. THE C O V A R I A N C E  M A T R I X  

3.1. The Random Cluster Representat ion of the Covar iance 
Mat r ix  

In this section, we rewrite the covariance matrices with free and 
constant boundary conditions, 
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and 

G'~"~'r y) = ( q6(a.,., m); qr(ay, n))  r~ (3.1) 

G"fl"(x- y) = ( qr(a,., m); qf(ay, n) ) ~ (3.1) 

in terms of the random cluster representation of Fortuin and Kasteleyn. t~3) 
We do this by first deriving finite-volume expressions and then taking 
infinite-volume limits. 

3.1.1. The Covariance Matr ix  in Finite Volume. Before deriving 
our representation for the covariance matrix, we recall the corresponding 
result for the (finite-volume) magnetization 

1 
M,.(fl, A )=  (qf(a. , . ,O)-l)o. .~ (3.3) 

q--1 

Using the symbol X*--~ Y for the event that the set X is connected to the 
set Y by a finite path of occupied bonds, we see that the expression (2.15) 
almost immediately gives 

M,.(fl, A )  = ] - /wir ,  A( x ~ OA ) (3.4) 

For future reference, we note that this can be easily generalized to the 
expectation of e ip~x with p ~ ~\{0} = {2n/q ..... 2zt(q - 1)/q}. We obtain 

(e~P"")O.A=Pwir. A(X*"~OA) if p ~ \ { O }  (3.5) 

We begin by considering the finite-volume two-point function with free 
boundary conditions, 

G~r'~'~..~(x, y) = ( qr(a,., m); qr(ay, n) ) rr~. A (3.6) 

Using the fact that (qr(a.,.,m))r~e.A = I for all m and all x e A ,  we first 
rewrite GTr'"~..~(x, y) as an untruncated expectation value 

G'~r'r = ((qO(ax, m) - 1)(qr(a.,  n ) -  1))rr~. A (3.7) 

Now observe that 

Erree((q6(ax, m ) -  1)(q6(ay, n) - 1)Ico)=0 

if x and y are not connected in the configuration co, while 

Erree((q6(a.,-, m) - 1 )(q6(ay, n) -- 1 )[ co) = qO(m, n) -- 1 
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if x and y are connected. Thus, defining the connectivity in the FK 
representation 

Zrr~e ' A(x, y) =/z rre~" , l (x  ~ y )  (3.8) 

we obtain the following: 

L e m m a  3.1. The finite-volume covariance matrix with free bound- 
ary conditions has the representation 

G~r"e'e, A(X, y )  = (qO(m, n) -- 1 ) rrr~. A(x, y) (3.9) 

R e m a r k .  The result (2.9) in ref. 1 for the usual two-point function, 

1 
q - 1  (qO(o'x'O'Y) 1)rree'A-----Zfree'A(X'Y) 

is proportional to the trace of our expression (3.9). 

Next, we rewrite the finite-volume covariance matrix with constant 
boundary conditions, 

G"" t x ~ - c. A,- - - Y , -  (q~(tr,., m); q6(cry, n ) )c .  ,~ (3.10) 

To this end, we define the finite-cluster connectivity 

f i n  t ~w~r, ~ x ,  y) = Uwir, A({x ~ y} c~ {x ~ OA} 1 (3.11) 

and the covariance of the events that x and y are connected to the 
boundary OA 

Cwir.A(X,y ) =Itwir. A ( { x  ~-+aA} c~ { y ~ a A ) }  

--]-twir. A( X ~ 0A),Uwir, A(Y ~ OA ) (3.12) 

We have: 

I . e m m a  3.2. The finite-volume covarlance matrix with constant 
boundary conditions has the representation 

Go, A(x, y) = ( q f ( m ,  n) - 1) r,. , m n  ~" wir, atX, Y) 

+ ( q , ~ ( m , c ) - - l ) ( q , 5 ( n , c ) - - l ) C w i ~ , A ( x , y )  (3.13) 
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Proof. By the symmetry of the model, it is enough to establish 
the lemma for c = 0 .  In a first step, we prove a similar relation for 
( eipa~, e-iY~')o. A namely 

( eip~x; e-iY~,.)o., ~ 

=(1-c~(p,  O))(1-cS(p, "f'wir,fin A~X,; y)) 

(3.14) 

Assume w.l.o.g, that p q:0 and p' ~ 0, since otherwise (eiP~-'; e-iY',')o, A = O. 
Then recalling the definition of truncated expectation values and observing 
that by (3.5) 

( eiP'Tx)o, .4 ( e-ip%')o, A =,/-/wir, A( x ~ OA) ltwi~, A(Y ~ OA) 

the proof of (3.14) reduces to showing that 

(e~P~-"e-~P"~.")o.A=Pwir, A({x ~-~OA} n {y,-~OA} )+b(p,p ' )  n. , Z'wir ' A[X, Y) 
(3.15) 

We consider the cases p = p '  and p ~ p '  separately: If p Cp',  the 
expectation Eo(exp(ipcr,.)exp(-ip'ay) 1o9) is zero unless both x and y are 
connected to the boundary, in which case Eo(exp(iptr.,-)exp( - iptry) I co) = 1. 
As a consequence, 

(eiPaxe-iP'aY)O,A=flwir,.~({X+--~OA } ~ {y*--+OA}) if p ~ p '  (3.16) 

I f p = p ' ,  we consider two cases: either x*--~OA in the configuration co or 
x,c* OA. In the first case, Eo(exp(ipa.,.) exp(- ip 'ay)lco)  = I if y*--~OA as 
well, and Eo(exp(ipcrx) exp(-ip 'ay)[co)  = 0 if y q* OA, yielding a contribu- 
tion of flwir, A(X',-'~OA and y*--~OA). In the second case, Eo(exp(ipa,.) 
exp(-ip'ay)[co)= l if x ~--~ y and Eo(exp(ipa,.)exp(-ip'cry)[co)=O if 
x ~ y, yielding n, ~'wir, A( X, Y). Thus 

( eiP~~e-~P'~Y)o,A =].Awir, A( {X ~"~OA } ~ { y,--, OA} ) 
n, =p, rwir. A(x,y) if p (3.17) 

Equations (3.16) and (3.17) establish (3.15) and hence (3.14). 
Given (3.14), the proof of the lemma is an easy exercise: observing 

that the delta functions qb(ax, m) and qO(try, n) can be rewritten as 

E eiP(ax-m) and y" e -ip'(ay-n) 
pe~ p ' ~  

respectively, we multiply both sides of (3.14) by e x p [ i ( p ' n - p m ) ]  and sum 
ove rp  andp '  to obtain (3.13) for c = 0 .  1 
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3.1.2. The Covar iance  M a t r i x  in In f in i te  Vo lume.  In this 
subsection, we extend our representations of the covariance matrix with 
free and wired boundary conditions to the infinite volume. To this end, we 
again denote~by C ( x ) =  C(x;  co) the set of occupied bonds connected to x 
in the configuration co, and define the (translation-invariant) analogs of 
expression (3.8) for the connectivity, 

rfree(X - - y )  =/./rree(X ~--~ y)  (3.18) 

expression (3.11 ) for the finite-cluster connectivity, 

fin X -- X Z'wit(. - -y)-- / twir(~ *-*y a n d  IC(x)l < ~ )  (3.19) 

and expression (3.12) for the covariance, 

C w i ~ ( x - y )  = Cov,,w,,(IC(x)l = oo, IC(y)l = ~ )  (3.20) 

where in general Cov~,(A, B ) = ~ t ( A c ~ B ) - I ~ ( A ) l t ( B )  is the covariance of 
events A and B with respect to a measure /z. We call the function 
C w i r ( X - y )  defined in (3.20) the infinite-cluster covariance. Our infinite- 
volume representation is contained in: 

Theorem 3.3. The covariance matrices Grrm~(x-y)  and G ' " ( x - y )  
can be expressed as 

mn G f re e ( x -  y )  - (q8(m,  n) - 1) r(x, y) (3.21) 

and 

G T ' ( x  - y )  = (q~(m, n) - 1 ) "r~'~r(X - y )  + (q~(m, c) - 1 ) 

x (qJ(n,  c) - 1 ) C,,,ir(x - y )  (3.22) 

Proof .  Given the corresponding finite-volume statements in Lemmas 
3.1 and 3.2, the theorem is an immediate consequence of Proposition 3.4 
below. 

Remark .  �9 For the diagonal elements of the covariance matrix, an 
analog of Eq. (3.22) was already stated in Proposition 1.1 of ref. 23 with a 
proof referring to techniques developed in ref. 1. However, we do not see 
how these techniques, originally developed to treat the increasing events 
defining the magnetization, apply to two-point functions, in particular how 
they can be used to establish the infinite-volume limit for rwi r.n" 

82~82~-6~ 
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Proposition 3.4. Let q>/1 be real, let Zrr~,A(x,Y),  fi" " z,,,ir. At, x, y), and 
Cwir, A(X,y) be the quantities defined in Eqs. (3.8), (3.11), and (3.12), and 
let rr , ,~(x-y) ,  zf i" (x-y) ,  and Cwir(X--y ) be the corresponding infinite- 
volume quantities, defined in Eqs. (3.18)-(3.20). Then the infinite-volume 
limits of zr~,o.,~(x, y), fi" " ~'wir, A( X, Y), and Cwir, A(X, y) exist, and 

rrr ,~(x-y) = lim rrrr 
A ~ Z  d 

f in rwir(X--y) lim fi" " = ~'wir, Atx, Y) 
A ~ Z  d 

and 

C,,,i~(x - y )  = lim Cwi r A(X, y) 
A ~  Z d 

(3.23) 

(3.24) 

(3.25) 

Remark.  For local observables, the existence of the thermodynamic 
limit follows immediately from the FKG monotonicity properties (2.18) 
and (2.19)--see Eqs. (2.20) and (2.21). This, however, does not imply the 
relations (3.23)-(3.25), since the events in question are nonlocal; the rela- 
tions can only be established after an interchange of limits. In the ordered 
phase, this interchange is not merely technical--it is related to the question 
of how the infinite cluster emerges from large clusters in a finite volume. 
Thus it depends sensitively on boundary conditions. For example, for a free 
boundary condition analog of the finite-cluster connectivity (3.19), an 
infinite-volume statement like (3.24) is actually false. 

Proof. Introducing the event Rx, y(A ) that x and y are connected in 
B(A),  we obtain for the right hand side of (3.23) 

lim I.tfree, A(X ~"~ y) '= jimapfree A(Rx ~(A)) 
A ~  ;ed ~ " 

while the left hand side is 

= !lna z ' = lira lim /*rr~.,(R.,..y(A )) /Jrr~(x*-*y) A ~Prr~(Rx'y(A z '~zu  A~Z '1 

We therefore have to show that 

lim lim pr~o,A(R.,..y(A'))= lira pf~e~,,~(R~. ,,(A)) (3.26) 
A ' ~ Z  d A ~ Z  d A ~ 2 [  d - , .  

In order to prove (3.26), we combine the monotonicity property (2.18) 
with the fact that Rx v ( A ' ) c  R:,.y(A) if A' c A  to get 

~< ' A(Rx.~(A)) if A' c A  I.trr~e.a,(R.~.y(A'))-~.l-trr~e A(R:,. v(A )) ~</Jrr~. . 

(3.27) 
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Taking the limits A--, 7/d and A ' ~  Z d, we find that the inequality (3.27) 
implies Eq. (3.26). 

fin In order to prove (3.24), we consider the event Rx, y(A) that x and y 
are connected by a cluster C(x )cB(A) ,  as introduced in Proposition 2.7. 
Recalling that OA = { x r A I dist(x, A) 1 }, we see that "" = Rx.y(A) is the inter- 
section of the event Rx.:,(A) with the event that x. is not connected to OA. 
We claim that 

fin t fin t fin A t ~flwir. A(Rx. v( A ) )  . . ~</t wir. A(R.,.. y(A) ) if c A  ]-/wir. A'(Rx, v( A )) 
(3.28) 

As before, the second inequality follows from the fact thatRx.y(Afin ' ) c  R,..fi"y(A ) 
if A ' ~  A, which implies that/twir A(R~"v(A')) is monotone increasing in A'. 
However, the monotonicity of P~i~. A(Rr),-~.:,(A')) in A is less obvious because 
Ran (A'] is neither an increasing nor a decreasing event. It is, however, an x ,  y x - -  

event of the form (2.27) considered in Proposition 2.6 and its corollary. 
Namely, 

R.,.,y(A )-- U { C ( x ) = B }  = U {cos--1}  c~ {o9a.s=O} 
B B 

(3.29) 

where the union goes over all connected sets B c B(A') that join x to y, 
O9B is the configuration co restricted to the set B, and a*B is the set of all 
bonds in Bd\B which are connected to B, as in the proof of Proposition 2.7. 

fin t Thus by the corollary to Proposition 2.6, l, twir, A(R:, .y(A )) is an increasing 
function of A' c A ,  which is actually stronger than the first inequality of 
(3.28). This completes the proof of (3.24). 

In order to prove (3.25), we remark that it has been already shown in 
ref. 1 (Theorem 2.3c) that 

pwir(lC(x)l- or) = l i m  /~wir, A(x~--~OA) 
A ~ Z  d 

The proof of (3.25) therefore reduces to showing 

/Xwir(lC(x)[ : oo and IC(y)I = oo))= lim Pwir. A(x*-~OA andy*-*OA) 
d ~ ,E d 

(3.30) 

OA Proceeding as before, we now introduce Rx. j, as the event that both x and 
y are connected to aA. With this notation, Eq. (3.30) can be rewritten as 

i ra  Z l i m  ~ a A ' ~  ~naA x /lwi~.,~t~ ...... j = l im (3.31) ]-lwir, A~/Xtx,  v) 
A d A ~ E d  - A ~ z d  " 
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OA " A t Using (2.19) instead of (2.18), and observing that R~~ ~ R, . r  if c A ,  we 
obtain 

o.4, >~ OA' >~ oA A' t.Lwir, a,(R,,.y) .,...l~wi~.a(Rx, y) ~t2wir. a(.Rx.y) if c A  (3.32) 

As before, the proof is completed by taking the limits A ~ Z a and 
A ' --' Z a .  I 

3.2. The Covariance Matr ix  and Its Eigenvalues 

Here we analyze the structure of the covariance matrix 

G"b"(x -- y) = (qO(a,., m); q~5(ay, n)) b (3.33) 

with free and constant boundary conditions, summarizing our results in 
Theorem 3.5 at the end of the section. Before discussing particular bound- 
ary conditions, we note that in general 

~., G"b"(x -- y) = ~ G"j"(x - y )  = 0 (3.34) 
t n  t !  

which follows from the fact that any truncated expectation ( A ; B ) b  
vanishes if either A or B is constant, and from the obvious relation 
Z, ,~s6(ax,  rn)=l.  In particular, this implies that, independent of 
boundary conditions, G"j" always has a trivial eigenvalue 0, corresponding 
to an eigenvector v'o = (1 ..... 1) e R q. 

Now consider the matrix with free boundary conditions 

G~'r'e'e(x--y) = (qO(a~, m); q3(ay, n))  rr~e (3.35) 

Due to the permutation symmetry of the Hamilton function (2.1) and the 
symmetry of the boundary conditions, all diagonal elements are equal, as 
are all off-diagonal elements. Combining this with the observation (3.34), 
we conclude that 

Grr~(x-y)  ( 6 ( m , n ) - ( 1 - 6 ( m , n ) ) q - ~ ) o o  . "" = Grr~e(x - y )  (3.36) 

Given (3.36), the matrix G'r'r'~"~(x-y) is easily diagonalized. We find one 
trivial eigenvalue 0, corresponding to an eigenvector b" o = ( 1 ..... 1 ), and one 
(q - 1)-fold degenerate eigenvalue 

= q oo ~ - l  Gfree(X--Y) q -  I Gfree(x-Y)= (qO(a,., a y ) -  1)free (3.37) 
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corresponding to the (q-1) -d imensional  eigenspace orthogonal to ~'o. In 
the second equality in (3.37), we have reexpressed oo Gf~e(x-y) as the usual 
two-point function. 

Remark. The above results imply that, in the free boundary condi- 
tion case, the covariance matrix of the q-state Potts model does not contain 
more information than the standard two-point function. As we will see 
below [and as should be clear from the fact that G'"(x-y)  always has one 
trivial eigenvalue], the same is true of the covariance matrix of the Ising 
model (q = 2 )  with constant boundary conditions. This may explain why 
the covariance matrix has not been more widely studied previously. 
However, as we shall see below and in subsequent sections, the q > 3-state 
matrix with constant boundary conditions does have additional content, 
and this content has a clear stochastic geometric interpretation. 

Next we analyze the covariance matrix with constant boundary 
conditions, 

G"~"(x- y) = ( qO(ax, m); qJ(ay, n) ) ,. (3.38) 

Starting with the special case q = 2, we use (3.34) to conclude that 

00 G~ (x--y) = G~)(x-y) = - G~ = -G~~ 

Combined with the fact that G~176 Gl~(x-y) by the symmetry of 
the model, we obtain 

G"j"(x-y)=(~(m,n)-(1- f i (n ,m))G~176 for q = 2  (3.39) 

Observing that the matrix structure of (3.39) is identical to that of (3.36) 
with q = 2, we see that we again obtain a trivial eigenvalue of 0 and an 
eigenvalue 

G(1)< wiAX--y) = G~176 = (s.,.; Sy)o for q = 2 (3.40) 

Here we have rewritten G~176 in terms of standard Ising spins 
sx = 2~(ax, 0) --" 1. 

For q ~ 2, the matrix structure of G'C"(x- y) is less trivial. Using rela- 
tion (3.34) and the fact that constant boundary conditions c e S leave the 
symmetry of permutations among elements of S\{c} unbroken, it is easy 
to show that there are only two independent matrix elements. Taking these 
to be G~176 and G~l(x-y), we obtain 
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G ~ ( x - y ) = G ~ 1 7 6  if c e S  
mz , I G, ( x - y ) = G  o ( x - y )  if n # c  

1 
G ~ " ( x - y ) = G ~ ( x - Y ) =  q - l  G~176  if n r  

l G~176 --y) --q-~ ag'(x-y) G:"(x - y) - (q _ 1)(q - 2) 

(3.41) 

if n ~ m ,  n , m ~ c  

In order to diagonalize G " " ( x - y ) ,  we begin by observing that the 
expectation <. >~ is invariant under the group Sq_, of permutations of 
S\{ c}. Diagonalizing G~" on the Hilbert space corresponding to the trivial 
representation of Sq_ ~, we identify two eigenvectors: 6o = ( 1 ..... 1), corre- 
sponding to the simple eigenvatue zero, and Y,, with components 
(v,),, = q,~(m, c ) -  1, corresponding to the nontrivial simple eigenvalue 

G(t)• .. ~ GOO(x q wir"~ - Y ) =  - Y ) = q -  1 <q~(ax, 0); q6(ffy, 0)> 0 (3.42) 

On the remaining (q-2)-dimensional subspace orthogonal to fro and b',, 
we finally obtain the (q-2)-fold degenerate eigenvalue 

G~i)r( x _ y )  = ~ GI,( x __y) 1 GOO( x - - Y )  
q - z  ( q -  1)(q-- 2) 

= G ~ l ( x - y )  - G~2(x-y)  (3.43) 

It is interesting to note that, as in (3.37), it is possible to express the eigen- 
value (2) Gwi~(x--y ) in terms of an untruncated expectation. Indeed, we may 
simply rewrite the second line in (3.43) as 

(2) Gwi~(x - y )  = �89 (q~(a~,., 1 ) - q6(ax, 2)); (qf(ay, 1 ) - qO(ay, 2))> o 

= �89 1)-qO(a.,., 2))(q~(ay, 1)-qc~(ay, 2))>o (3.44) 

We both summarize the results of this section and establish their 
stochastic geometric significance in the following: 

T h e o r e m  3.5. Consider the q-state Ports model with q1>2. Then 
the free-boundary-condition covariance matrix G'}~'r has the simple 
eigenvalue zero corresponding to the eigenvector ~'0 = (1 ..... 1), and a 
(q - 1 )-fold degenerate eigenvalue 

Grr~e(x-y) = q <qf(a.,.,o,,)-l>rr~,, (3.45) 
q - 1  
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corresponding to the subspace orthogonal to 60. For q >~ 3 and all c e S, the 
constant-boundary-condition covariance matrix G"~"(x-y)  has the simple 
eigenvalue zero corresponding to the eigenvector 60 = ( 1 ..... 1 ), a nontrivial 
simple eigenvalue 

G ( L ) f x - y )  = q (,qS(ax, 0); qS(0-,,, 0))o (3.46) 
.... - q -  1 

corresponding to the eigenvector 6~, with components (v~),, = q6(m, c ) -  1, 
where ~o and ~'~ belong to the trivial representation of the unbroken sub- 
group Sq_ ,, and a ( q -  2)-fold degenerate eigenvalue 

(2)  X -  _ _  1 (~ (7" Gwir(~ Y ) -  2((q ( .,-, 1)--qd(a.,., 2))(qd(ay, 1)--qd(ay, 2)))0 (3.47) 

corresponding to the subspace orthogonal to 6o and 6,. For q = 2, the 
matrix G " " ( x - y )  has only the trivial eigenvalue zero and the eigenvalue 
G(,), wir [  .X" - -  y). 

Moreover, the eigenvalues Grree(x-y), (1) (2) __ Gwir(X-y) ,  and Gwir(x y) 
can be expressed in the random cluster representation as 

Grre~(x - y) = qrrr~e(x - Y) (3.48) 
( I )  Gwir(X-y)=q1:~n.,r(X--y)+q(q - 1) Cwir(X--y ) (3.49) 

and 

(2)  fin 
Gwir(:r --y)  = qZ'wir(X --y) (3.50) 

Proof. It only remains to establish the random cluster representa- 
tions (3.48)-(3.50) of the eigenvalues. But these follow immediately from 
expressions (3.37), (3.42), and (3.43) for the eigenvalues in terms of the 
matrix elements, and expressions (3.21) and (3.22) relating the matrix 
elements to the random cluster connectivities and cluster covariance. | 

4. THE C O R R E L A T I O N  L E N G T H S  

4.1. Existence of the Lengths ~free, ~wir"(1) and =wir cr 

In this subsection, we establish the existence of the limits, (1.7)-(1.9), 
using standard reflection positivity arguments. Namely, introducing the 
unit lattice vector #~ = ( 1, 0 ..... 0) e 7/d, we prove the following: 

T h e o r e m  4.1. Let q>~2 be an integer, and let G(t) denote 
Gfree(tO]) , G('.)(tg'~), or (for q>~3) (2) ^ . --w,r, Gwir(tel), see Theorem 3.5. Then G(t) is 
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a nonnegative, monotone decreasing, and log convex function of t, so that 
(G(t)/G(O)) l/t is monotone increasing in t, the limit 

1 _  _ lim log G(t) (4.1) 
t ~ o o  t 

exists, and the function G(t) obeys the a priori bound 

G(t)<G(O) e - '~ (4.2) 

Furthermore, denoting the correlation lengths defined in (4.1) by ~rree, ~(1) ~ w i r ,  
and ,~q) we have ~ w l r ,  

• , )  > ;~2~ (4.3) wir ~ ~wi r  

Proof. We start with the observation that each G(t) can be written 
as a truncated (infinite-volume) expectation of the form 

G(t) = (A; r t A ) b  (4.4) 

where b denotes either free or constant boundary conditions, A = A(ax) is 
an observable which depends on the spin variable ax of a single point 
x ~ Z  d, and T'A is the translation of the observable A by t~ .  Equation 
(4.4) follows from (3.37) and (3.35) for Gfr~, from (3.42) for G (') and from wir ' 
(3.44) for G '2) wir ' 

Due to the reflection positivity of the model (see Appendix A for a 
review of the basic ideas), T can be represented as a non-negative contrac- 
tion (0<  T~< 1) on a Hilbert space J r ,  and 

G(t) = (~, r'~k) 

for a suitable vector $ ~ v'CL Obviously, this implies that G(t) is a monotone 
decreasing, nonnegative function of t. By the Cauchy-Schwarz inequality, 

G(�89 + t 2 )  ) = (Ttd2~A, Tt2/2~l) <~ [G(tl)  G ( t 2 )  ] I/2 

so that G(t) is log convex. Noting 0 < G ( 0 ) < o o ,  this implies that 
(G(t)/G(O))l/t is monotone increasing in t, which in turn immediately 
implies existence of the limit and the a priori bound. Finally, (4.3) follows 
immediately from the representation in Theorem 3.5 and existence of the 
limits. I 

Remark .  For Gfr~ and -war,at2) the existence of the corresponding 
correlation lengths can also be established by subadditivity arguments (see 
Section 4.2 below). While these arguments are more involved than the 
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reflection positivity proof presented above, they have the advantage that 
they give existence of limits analogous to (1.7) and (1.9) for noninteger 
values of q, defined directly in terms of rr~, and ti, [cf. Eqs. (3.48) and ~'wir  

(3.50)]. Moreover, a slight variation of these arguments can be used to 
establish left continuity of the inverse correlation length 1/~r~e~(fl) 
(Theorem 4.2) and upper semicontinuity of 1/d (2) (Theorem 4.3). On the --~ wir  

other hand, subadditivity does not establish log convexity of G(t) and 
hence monotonicity of the full sequence (G(t)/G(O)) v', as we have from the 
above theorem for integer q. Furthermore, we are not aware of any proof 
of the existence of ~(~) which does not involve reflection positivity. wir 

4.2. E q u i v a l e n t  C h a r a c t e r i z a t i o n s  of  ~f, .e, ~(wli)~, and ~(w2i)r 

We already have stochastic geometric representations for the correla- 
tion lengths ~free and ~(2) ~wir as the decay rates of of rrre~ and nn Twir--See 
Theorem 3.5. In this subsection, we provide a stochastic geometric 
representation for ~(li) r (Theorem 4.4) and give alternative representations 
for ~rr~r and ?=(2) (Theorem 4.3, Lemmas 4.6-4.8). On the one hand, these --a wir  

alternative representations allow us to prove several results on the behavior 
of (tree and ?=(2) in particular left continuity of 1/~rr~(fl) (Theorem 4.2), "~ w i r ,  

upper semicontinuity of ./~(2) (Theorem 4.3), and the two-dimensional 1 / %  wi t  

dichotomy (1.11) and (1.12) involving (r~e~ and /~(2) discussed in the ~ w i r  

introduction. On the other hand, the alternative representations may be of 
interest for numerical determinations--in particular the representation of 
~(2) in terms of the probability d~ . . . .  w ~ r  "Cwi r ~n) that the diameter of the cluster C(0) 
is n (Theorem 4.3). The representation of ~:(') -w~ as the decay rate of the 
covariance Cwir, provided the magnetization M(fl)> 0, may be of interest 
both to mathematicians and numerical physicists. It is worth noting that 
many of the results of this subjection are generalizations of corresponding 
percolation results of ref. 7 to q >~ 1, but the proofs are quite different due 
to the lack of independence, the lack of a BK inequality, and the presence 
of boundary conditions. 

Some of the results in this section (and most of the proofs) are of a 
rather technical nature. In particular, we introduce many connectivity func- 
tions and ultimately show that they have only a few independent decay 
rates. However, in the process, the notation and the arguments become 
rather cumbersome. In order to simplify matters, we first introduce only a 
few "physical" connectivity functions and summarize the results of indepen- 
dent interest on ~r~, ~(~) and x(t) in Theorems 4.2-4.4, respectively. The "~ wlr  ~ w i r  

remainder of the subsection is devoted both to the proof of these results and 
to the statement and proof of several more technical results which we will 
need for our proof of the two-dimensional dichotomy in Section 5. 
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We start with a few definitions. For b = wir or free, we introduce the 
on-axis connectivity function 

zb(Ldl) =/zb(0 ~ Lel) (4.5) 

the on-axis finite-cluster connectivity 

z'~n(t~,) =fib({0 ,--~ Z~} ca { IC(0)l < ~ } )  (4.6) 

the diameter function 

z~iam(L) =/zb(diam C(0) = L) (4.7) 

where diam C(0) denotes the diameter of the cluster C(0) in the s norm, 
i. e., the maximum diameter in any of the d coordinate directions, and the 
covariance 

Cb(X--y)=I~b({IC(x)I=o0} ca{IC(Y)l=oo})--P~(fl) "- (4.8) 

where 

P~(,8) =~(IC(0)l = oo) (4.9) 

We denote the corresponding correlation lengths--whenever they exist--by 
,~nn ~:diam and ~ ' .  

~ b ~  "ob ~ "~b 

Theorem 4.2. Let 0 ~< fl ~< oo and q/> 1. Then the correlation lenths 
~wir and ~fre~ exist, ~f~er ~< ~wir, and 1/~free is a left continuous function of ft. 

Theorem 4.3. Let 0 < f l < o o  and q/>l .  Then for b =  wir or free, 
l : f i n  - -  ,,~diarn Also the correlation lengths ",b'~nn and ",0~diam exist and are equal: ",b --',b �9 

~nn ,< ;=On and 1/(an is an upper semicontinuous function of ft. If q >/3 is wir ' ~  % free,  - / ~ w l r  

an integer, then in addition 

• ( 2 )  - -  &fin - -  ( d i a m  (4.10) 
wir - -  ~ w i r  - -  ~ w i r  

Remark. Combined with the obvious inequality 
inequalities from Theorem 4.2 and Theorem 4.3 give 

~ f i n  ~ , i ~ f i n  ~ f r e e ~ w i r  wir  "~ ~f ree  

provided 0 < fl < ~ and q >/1. 

•fin free "~ ~rree, the 
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T h e o r e m  4.4. Let 0.N<fl~<oo 
correlation length ~wCir exists and 

while 

and q >/2 be an integer. Then the 

c ~:(J) ~w~ =~  if M ( f l ) > 0  (4.11) 

c {(l) =~(2) _- ~ i ~ = 0  and -wi~ ~wi~ ~r~  if M ( f l ) = 0  (4.12) 

In order to prove Theorem 4.4, we use a proposi t ion which may  be of  
independent interest and is stated next. 

P r o p o s i t i o n  4.5.  Let 0 ~<fl~< oo and q >/1. Then 

Cb(X --y)  n . .  >~r b (X - - y ) p b ( f l )  (4.13) 

Proof of  Proposition 4.5. The p roof  of this proposi t ion is an easy 
generalization of the proof  of  the corresponding statement in ref. 7. For  a 
set B c Bd, let P(B) be the set of points x such that  x ~ Ob for some bond 
b ~ B. Denoting by ~,. the family of  finite connected subsets B c Bd for 
which x ~ P(B),  we have 

Co(x-y)-- /~o(IC(x)[ < m)/~6(IC(y)l  = oo) 

- m ( {  IC(x)l < oo)} c~ { IC(y)l = oo}) 

= ~. (pb(C(x)=B)pb(IC(y) I=oO) 
B E .q,3 x 

--Pb({ C(x)=  B} ~ { IC(y)l = oo} )) 

= ~ (pt , (C(x)=B)(/~t , (IC(y)l=m) 

- / ~ ( I  C(y)l = oo I C ( x ) =  g ) )  

>>. ~ (p6(C(x)=B)(/t6(lC(y)l  = oo) 
B ~ .~.,: : 

) , E  P I B )  

-l~b(IC(y)l = oo I C ( x ) =  B)) 

- Y'. Pb(C(x)=B)pb(IC(y)I  = m ) = r ~ " ( x - - y )  P~(fl) 
B E ~ x :  

v ~ P  B 

where in the fourth step we have used that  for all B e ~,. 

{ C ( x ) = B }  = { w s =  1} n {toa,,  = 0  } - A 2  r~D 
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is an event of the form considered in the second inequality [part  2(i)] of 
Proposition 2.6, and hence 

pb( I C(y)l = o o ) - p d  I C(y)l = oo I C ( x ) =  B)> /0  

Here, as in the proof of Proposition 2.7, ton is the configuration to restric- 
ted to B, and the boundary O*B of B is the set of all bonds in BdkB which 
are connected to B. II 

Proof o f  Theorem 4.4. Since M(fl) wi~ =Poo (fl), we have that for 
M(fl) > 0 

In (q - I ) C,,,i~(x - y )  + "/'wir(X --y) 

<~ ((q--1)"+" MTfl) ) Cwir(X -Y) 

1 
~<(1 + ( q _ l i M ( f l i ) ( ( q - 1 ) C w i , ( x - y )  

fin + r w~r(x - y ) )  

fi" - 0 .  Combined with Theorem 4.1., by Proposition 4.5 and the fact that rw~ r 
which guarantees the existence of the inverse correlation length 

-- -'1- rwir(Le I )) 1 _ _ lim log((q 1) C w i r ( L ~ l )  fin ^ 

wir L-- ~ L 

provided q >/2 is an integer, we obtain the statement of Theorem 4.4 for 
M(f l )>0.  On the other hand, if M(fl )=P~r( f l )=O,  then fi" Twit ~ ~'wir and 
Cwir(x-y)=O, which implies ~wir?(~)--?t2)-- ~wir and ~cir=0. Finally, M ( f l ) = 0  
implies/~wir=Prree (see Ref. 1), and hence ~i)r=~rre~. | 

In order to prove Theorems 4.2 and 4.3, we will need several approxi- 
mations to the connectivity functions zb(L~]) and r~"(L~). Additional 
approximations will be needed to prove the dichotomy (1.11) and (1.12) 
discussed in the introduction. Rather than introducing them as they arise, 
we define all of them here, so that the reader may more easily refer back 
to the definitions. We will consider several subsets of 7/d, namely the the 
"cylinder" 

H(L) = {xE z~10 <x ,  <L} (4.14) 

the "tunnel" 

T(M)={x~Ea l - -M/2<~x i<~(M+l ) /2 ,  i=2 , . . . ,d}  (4.15) 
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and the "box" 

A(L, M)= T(M)c~ H(L) (4.16) 

We then consider the following approximations to rb(L~]) in the cylinder, 
tunnel, and box: 

z~Yl (L)  =fib, H(L)( 0 ~ Ltl ) (4.17) 

z~U"(L, M) =Pb, 77~r)(0 ~ L~]) (4.18) 

and 

rb~ M) =Pb. mL, M)(0 ~ Le l )  (4.19) 

In all cases b = wir or free. Assuming that they exist, we denote the corre- 
sponding correlation lengths by ~,Y~, ~U"(M), and ~b~ We also 
consider the several approximations to rbn"(L~), namely 

n {0 0 OH(L)}) (4.20) 

^bo,,tr M)=ub.mL~)({O._~LO, } n{O~-~OA(L,M)}) (4.21) "C b ~ 

"?~Y](L) =pb({O,---~ Z~,} c~ {IC(O)l < oo} 

n { C(O) c B(H(L))} ) (4.22) 

and 

"?b~ M)=,ub({O*-', L~]} n {C(O)cB(A(L, M))}) (4.23) 

and we denote the corresponding correlation lengths--whenever they 
exist--by (~Y', (b~ ~Y~, and (~~ 

We note that the distinction between (4.17)-(4.21) and (4.22), (4.23) 
is that in the former quantities the probabilities are computed with respect 
to measures that live on the relevant sets A, while in the latter the 
probabilites are computed with respect to the full measures Pb, but the 
events in question occur in the relevant sets B(A). 

Our first 1emma gives the equivalence of several definitions of the 
correlation length ~b and will be used at the end of this section to prove 
Theorem 4.2. 

Lemma 4.6. Let 0~<fl~<oo and q>_-l. Let r(L) denote Z,ir(Ld~), 
t u n  b . . . .  M). Then the correlation length rrree(LOl), rr~e~(L, M), r~Ydr or "rfreetL, , 
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corresponding to r(L) exists, and r(L)~<e -L/r Furthermore, the correla- 
tion lengths t~, box ~f=r and ~r~ee(M) are monotone decreasing in M, 

t u n  __  b o x  
~ f r e e ( M )  - -  ~r=~(M), and 

__ ~cyl ~ t u n - -  ~box 
~ f r e e  - -  b f r e e  free - -  b f r e e  (4.24) 

w h e r e  : t u n  - l i m  :~U, tM~ and ~ b o x  " box "o free-- M.  oo'~f~=, , f~ =l lmM~ oo(f~e~(M)- 

Proof.  Considering an arbitrary subset A = Z d and two points x and 
y in A, we note that by the FKG inequality (2.17) 

I~b, 3 (x  +-+Y) >>-I~b, A(X ~--~ z)/tb, ,t(z ~--~ y) (4.25) 

for all z e A; furthermore, by the FKG monotonicity (2.18) 

/Zrr=.A(x~--~y) >~Izf~ . . . .  v (x  +-+ y)  (4.26) 

for all A' ~ A containing x and y. Using these inequalities, one obtains sub- 
additivity, and hence existence of the corresponding correlation length 3, 
together with the a priori bound r(L)~< e -L/~ for all five connectivity func- 
tions r(L) considered in the theorem. Observing that the monotonicity 
(4.26) implies the monotonicity of rr=eb . . . .  t L, M) and rfreetUn (L, M) in M, one 
obtains the monotonicity of '~" and box ~rr=(M) ~f=~(M) in M, as well as the 
justification of the interchange of limits 

lim lim log zltU~(L, M) _ lim lim log r~r~(L, M) 

and similarly for ~f=~b~ The only additional ingredient needed in the proof 
of the equalities 

~rr= = lim tu, and c=~ ~f=~(M) ~cyl lim box 
= ~ f r e e ( M )  

M ~ a o  M ~ o o  

is that /~fr=, r(M)(X~--~y) converges to /tf~ee(X ~ y )  (and similarly for box, T free ) ,  

which is established in the same way as (3.23). 
_ ~yl and We are left with the proof of the equalities ~ f ~ -  r~= 

t u n  __ b o x  
- ~ r ~ = ( M ) .  To we use ~f~=(M) this end, (4.25) and (4.26) to get the bound 

ktrree( O ~ nL~ l ) >~ l.tfre~.t-t~,,z)( O ~ nLO i ) 

n - -  I 

>I l-I /.tfr~e.H~.l.~(iLO~ +"~ (i + I)L01) 
i=O 

(4.27) 
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Taking the limit n--* oo, and noting that all but, say, ~ terms on the 
right-hand side have arguments which are sufficiently far from the boundary, 
we obtain 

e -  L/erree ~ e -  L/~Y~le ~ rfre~(L# l ) 

which, in the limit L--, oo, implies that ~fr~e = ~cylr~. The equality of ~ ( M )  
and box ~f~(M) is proved in the same way. I 

The next two lemmas give several useful relations between the correla- 
tion lengths corresponding to (4.20)-(4.23), and are important ingredients 
for the proof of Theorem 4.3 (see below) and for the proof of the 
dichotomy (1.11) and (1.12) (see Section 5). In order to state the first of 
these two lemmas, we introduce for each x• eT/d-~C~ [ - - M ,  M] d-I the 
off-axis connectivity function in the box 

~boxt r r b tL, M; x• =/tb({0 ~ (L, x• n { C(0) =B(A(L,  M))}) (4.28) 

and for each x .  e 7/d- ' the off-axis connectivity function in the cylinder 

f~,Y'(L; x•  0,--* (L, x• c3 { IC(0)l < oo} c~ {c(0)cB(H(L))})  
(4.29) 

We note that A M = { C ( O ) ~ B ( A ( L , M ) ) }  is an increasing sequence of 
events which converges to the event { I C(0)I < oo } n { C(0) ~ B(H(L)) }. As 
a consequence, 

~b . . . .  ?~yI(L; x• as M/" oo r b to,  M; x• ,~ (4.30) 

L e m m a  4.7. Let 0 < fl < oo and q/> 1. Then for b = wir or free, the 
correlation lengths ~,Yl and ~b~ corresponding to the connectivity 
functions (4.22) and (4.23), as well as the limit ~bTb~ -bOX(M), 
exist and 

~ y l  = ~ b q x  (4.31) 

In addition, 

~box~ r r b tL, M; x•  <~ C(fl, q) exp[ --L/~b~ <~ C(fl, q) exp(--L/~ b~ 

(4.32) 

and 

~Y~(L; x • <<, C(fl, q) e x p ( - L / ~  y~) (4.33) 

where C(fl, q) < oo is continuons as a function of fl and independent of L 
and M. 
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Remark .  We will later show that 7box_,:n, [see Eq. (4.53)] so that "~b - - ~ b  

Lemma 4.7, together with Theorem 4.3, gives us yet another characteriza- 
tion of ?(2) ~ wil"" 

Proof. In order to prove the lemma, we first establish the existence 
of a constant C(fl, q) < ~ such that for all x• ~ ;yd-I C~ [ --M, M]  d- l ,  

- b o x / / "  -box  r b ~ l , M ; x •  b (L2, M;x• q)~~ (4.34) 

To this end, we first rewrite the left-hand side of (4.34) in a form which 
allows us to apply Proposition 2.7. We consider the boxes 

A , =  { x s  r(M) l O<~x, <~L,} 

A2= { x ~ T ( M )  I L~ + 1 <~x, <<,L1 + L2+ 1} 

A =A(LI  +L2+ 1, M) 

and the points x_  = ( L 1 , x x ) , X +  = ( L i  + l ,  xz),  and y = ( L t  +L2+ l, 0). 
Using the translation and reflection invariance of the measures Pb, we then 
rewrite 

~~ I M; x• ~boxf/" zb ~'-'2, M; x• n. nn , =IG(Ro..,.(A1))~b(R=,.+.y(Az)) (4.35) 

where, as in Proposition 2.7, nn Ro,.,._(A~) is the event that 0 and x_  are con- 
nected by a cluster C(O)cB(A~), and similarly for a.,+.y~'~nn ~Azj.~ Observing 
that B§ i) c~ B(Az) = B(A i) ~ B+(A2) = ~ ,  we apply Proposition 2.7 to 
obtain 

fin fin fin fin pb(Ro.x_(Ai) ) (4.36) I.tb(R.,.§ ) <~pt,(R o .... (A1) n Rx§ ,(A2)) 

Next we note that all configurations co ~ R n~ t A ) r,~ o.x_~ I nRx+.y(A2) would con- 
fin tribute to the event Ro, y(A ) if the vacant bond ( x _ ,  x + )  were occupied. 

Using finite energy in the form (2.24), we therefore conclude that 

r,~ ' tRr'~ IA~) (4.37) Itb(Rr~"x_(A,) nR,.§ ~< C(fi, q)t-,bt 0.,,, , 

for a suitable constant C(fl, q) < m. Observing that 

m (  R~?,( A ) ) -~ . . . .  �9 --rb i l l  + L 2 +  1, M;0  ) 

we obtain the subadditivity bound (4.34). By standard arguments, the 
bound (4.34), together with the monotone convergence (4.30), implies the 
existence of the correlation lengths ~yl and ~~ and the limit 
~ ~ 1 7 6  the a priori bounds (4.32) and (4.33), and the 
equality of ~yl and "~bTb~ Finally, we note that by the finite energy relation 
(2.24), without loss of generality C(fl, q) may be chosen to be a continuous 
function of ft. | 



Covariance Matrix of the Potts Model 1281 

L e m m a  4.8. Let 0 < fl < oo and q >/1. Then the correlation lengths 
box  

-~wir~Cyl a n d  ~ w i r ( M )  corresponding to the connectivity functions (4.20) and 
(4.21), as well as the limit ~box_ lim ~box~ ~,, = w i t  - -  M ~  co % w i r  ~1vl ) ,  exist and 

~ r - -  f f b o x  - -  t~box ( 4 . 3 8 )  
wi r  - -  ~ w i r  - -  --a wi r  

In addition, 

^ b o x  -- L/~w~( m)  ] <~ C(fl, q) (4.39) rwi~ (L, M) ~ C(fl, q) exp[ %ox exp( - L/~̂ b~ ) 

and 

^cyl  -- L/~wir) (4.40) twit(L) ~ C(fl, q) exp( r̂ 

where C(fl, q) < oo is continuous as a function of fl and independent of L 
and M. 

R e m a r k .  While Lemma 4.7 gives us alternative representations of 
~ "  in terms of decay rates of infinite-volume connectivities, this lemma 
-- together  with Eq. (4.53) and Theorem 4.3--gives us representations of 
~t,~il ~ in terms of finite-volume quantities. 

Proof'. Following the proof of Lemma 4.6, we first establish two 
inequalities analogous to (4.25) and (4.26). In order to state them, we 
introduce the cylinders 

H(L~, L2)= {x e 7/d l L, <.x~ ~ L,_} (4.41) 

the boxes 

A(LI, Lz, M) = H(L, ,  Lz) c~ T(M) (4.42) 

[with T(M) as defined in (4.15)], the events 

fin RL,  ' L_,(A) = {Lt 0~ *--, Lz0~} w { C(0) c B(A)} (4.43) 

and in particular 

~ f i n  ( h//'~ - -  R fin L,(A(Lt, L2 ' M)) (4.44) 
LI,  L2 ~z 'a  / - -  ~ ' L I ,  _ 

We then claim that for a suitable constant C(fl, q) < c~, 

/2wr.z( L,,L,_(M))Itwir, A(RL2+t, Ls(M))~C(fl'qI.,Uwir. At L,,L3~ /' 
(4.45) 

if A = A( LI , L,_, M), 

, ' n f i n  
/2wir .  A'~tRfinz.,. L,( A .  ) )  ~ / / w i r .  A"t-I~LI. L,( A .  )) (4.46) 

822/82/5-6-5 
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i fA" =A '  =A,  and 

fin r /~wir..4(RL~. L2( A )) ~</twir, A(R~. L.,(A")) (4.47) 

if A' ~ A" c A. While the first of these three inequalities is proved in exactly 
the same way as (4.34) using finite energy and Proposition 2.6, the second 
follows from Proposition 2.6 (and its corollary) alone since fin RLj, L2(A) is an 
event of the form (2.27); see proof of Proposition 2.7 and Eq. (3.29). The 
last of the inequalities follows from the fact that ~'nn L,(A')c ~,fin tA,,~ if a~LI,  . ~ L I ,  L2 ~,~ } 
A' c A". 

Given (4.45)-(4.47), the proof of Lemma 4.8 is analogous to that of 
Lemma 4.6, with 

C(fl, q ) " - l  /t wir(/~o, t .L+.-i)(M)) 

>1 C(fl, q ) " -  ' / A  wir, A(O, nL  + n--  I. M ) ( R o ,  (nL + n -  , ) (M)) 
t l - - ]  

>~ I-[ I'twir, A(O, nL+n-I,M)(Ri(L+l),L+i(L+l)(M)) (4.48) 
i = 0  

replacing the inequality (4.27). I 

We finally turn to the proofs of Theorems 4.2 and 4.3. 

Proof  o f  Theorem 4.2. The existence of the correlation lengths ~free 
and ~wir has already been established in Lemma 4.6, and the inequality 
~rree ~<~wir follows immediately from the FKG ordering (2.23), so all that 
remains to show is left continuity of 1/~f~e~(fl). Due to Eq. (4.24), 1/~f, ee(fl) 
is a limit of finite-volume (and hence continuous) quantities, namely 

box 
1 lim lim log 27fr~(L, M) (4.49) 

~ f r ee (P )  M~oO z-o~ L 

As shown in the proof of Lemma 4.6, the finite-volume connectivity 
b . . . .  M) is subadditive in L and monotone increasing in M. It is also 27 free ~ .L,, 

monotone increasing and continuous in/L Choosing suitable subsequences, 
e.g., L = 2", and noting the minus sign in (4.49), this gives 1/~f~e~(/~) as the 
limit of a decreasing sequence of continuous decreasing functions, and 
hence establishes the desired left continuity. 1 

Proof  o f  Theorem 4.3. We start with the obvious bounds 

and 

-box(/" M) ~<'~yI(L) ~< ~n(L) ~< 2 ~'diam(n) 
n ~ L  

(4.50) 

- -bOX/ r rb t~,M)~< di . . . . .  27b t L )  for all M < ~ L  (4.51) 
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Now consider the event { C(0) = B}, where B is some given set of diameter 
L. Using suitable rotations and translations by vectors t ~ Z d, Itl ~ L, each 
such cluster B can be transformed into a cluster/~ c A(L, 2L) connecting 
the origin to 'a  point x =  (/, x• in the boundary of A(L, 2L). As a conse- 
quence, 

d iam r b (L)<~d(2L+l)a  ~ -b . . . .  Zb tL, 2L, x . )  
x E z d  - I  
Ix.tl  < L  

<~ d(2L + 1) :a -  l exp( --L/~ b~ (4.52) 

where we have used the a priori bound (4.32) of Lemma 4.7 in the last step. 
Combining the bounds (4.51) and (4.52) with Lemma 4.7, we 

immediately obtain the existence of the correlation length .~diam and the S b  

equality of ~diam and 7box Combining the bounds (4.50) and (4.52) gives ~ b  ~ b  " 
~box the existence of ",b '~n" and the equality of ~" and ~box, provided -~b < oo. If, 

on the other hand, 7box_ 7r "~b --~b - oo, we use the bound f~Y|(L) ~ t~"(L) ~< 1 to 
prove that the inverse correlation length exists and is equal to zero. Thus 
we have the existence of the correlation lengths ,~n, and ~diam and the ~ b  "~b 

equality 

~ box - -  ,.z:fin __ f i d i a m  (4.53) 
b - -  ~ b  - -  '~b  

The final equivalence of Theorem 4.3, namely d :~2) - ~ a "  for integer q/> 3, ~ w i r  - -  ~ w i r  

follows immediately from relation (3.50) of Theorem 3.5. 
We are therefore left with the proofs of the inequality ?n, _< ,~n. and = w i r  "~ ~ f r e e  

the upper semicontinuity of 1/~w~ r.n" Noting that r bn" is the probability of an 
event of the form considered in Proposition 2.6, the inequality follows 
immediately from the infinite-volume limit of (2.31). To prove the upper 
semicontinuity, we note that by Lemma 4.8 and Eq. (4.53), 1/~n~r can be 
written as a limit of finite-volume quantities, namely 

1 1 1 ^box log rwi r (L, M) 
fffin ~box c ~b~ = -- ~-oolim L~o~lim L (4.54) 
~wir = w i r  ~ w i r  

Combined with the a priori bound (4.39) of Lemma 4.8, this implies 

^ box  1/L 

e . . . . . .  s u p ( \  C ~ , ~  J J L,M 

and hence 

_• ^ b o x  t 1 . ,. f log C(p, q ) -  g'rw~r(L,M) 
fin = l n I  < 

~ w i r  L,M( 
(4.55) 
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Since both log C(fl, q) and ^box --lOg twi~ (L, M) are continuous and hence 
upper semicontinuous functions fl, and since the infimum of upper semi- 
continuous functions is upper semicontinuous, this establishes the upper 
semicontinuity of 1/ran | 

- / - ~  w i t  ' 

In the above proof, we actually obtained one additional equivalence 
which is not stated in Theorem 4.3, but which will be necessary in the proof 
of our dichotomy. Namely, by Eq. (4.53), we have: 

~box y fin Corollary. L e t 0 < f l < o e  andq>/1 .  Then, ,b  =~b �9 

5. THE TWO-DIMENSIONAL DICHOTOMY AND 
RELATED RESULTS 

5.1. Heuristics and Preliminaries 

The goal of this section is a proof of the two-dimensional dichotomy, 
the principal part of which is the duality relation (1.11) for all fl in the 
low-temperature regime. In this subsection, we discuss the heuristics of the 
relation, state our results, and briefly review two-dimensional duality in the 
random cluster model. In the next two subsections, we derive upper and 

n, and its approximations in terms of rfr~ e and lower bounds on ~ w i r  

rm Finally, in the fourth subsection, we put these approximations to ~rre~" 
bounds together with the equivalence lernmas of Section 4 and the 
ergodicity theorem of Section 2 to prove the dichotomy. 

In order to explain the heuristics of the duality relation (1.11 ), let us 
consider the representation of the random cluster model in terms of the 
order-disorder contours introduced in ref. 28 (see also ref. 4). In this 
representation, contours are defined as (the connected components of) the 
boundaries between regions of occupied bonds, regarded as ordered 
regions, and those of vacant bonds, regarded as disordered regions. Notice 
that in the wired measure, any finite cluster of occupied bonds must be 
separated from the infinite occupied cluster by a (disordered) region of 

f in  vacant bonds. Thus all configurations contributing to rwi~(x-y) have 
at least two contours surrounding the points x and y- -one  being the 
boundary between the cluster connecting x and y and the disordered 
region, and the second being the boundary between the disordered region 
and the infinite cluster. 

Let us begin by considering systems with first-order transitions at the 
transition point po. Since both the ordered and disordered phases are 
stable at flo, the two contours need not remain near each other. Indeed, 
under similar circumstances, it is proved in ref. 30 that two such order-  
disorder interfaces tend to behave like independent interfaces, leading to a 
surface tension goo between two ordered phases which is exactly twice the 
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surface tension trod between an ordered and a disordered phase. Now, in 
our case, the minimal combined area of the two interfaces is 4 Ix-y l .  
Moreover, we expect that large interfaces are suppressed at a first-order 
transition. Thus we expect n" rwir(X-y ) to decay exponentially with a rate 
4trod = 2Croo, which would imply 

1/•nn _ 
, ~ w i r  - -  2 t r o o  (5.1) 

Obviously, this relation should also be satisfied trivially at flo for systems 
with second-order transit ions--both sides should vanish. 

Now consider the regime fl > flo in a system with either a first- or 
second-order transition. In this regime, the disordered phase is unstable, so 
that large regions of vacant bonds are suppressed. Thus the two contours 
surrounding x and y tend to bind together, leading to a single order-order 
interface surrounding the points of minimal area 2 ] x - y ] .  This leads to a 
exponential decay with a rate 2aoo and hence again the relation (5.1). 

Note that due to the duality relation aoo(fl)= 1/~rree(fl*), Eq. (5.1) is 
equivalent to the desired relation (1.11 ) 

It would be interesting to make the above heuristic arguments 
rigorous. While this could presumably be done for sufficiently large q, a 
direct translation of these heursitics into a proof for arbitrary q seems 
much more difficult. We therefore follow a different route, based on our 
inequalities involving decoupling events (Proposition 2.6) and the equiv- 
alences established in Section 4. 

Before stating our main result, let us recall that the dual inverse tem- 
perature fl* is defined by 

(e p - 1 )(e a* - 1 ) = q (5.2) 

Our main result is: 

T h e o r e m  5.1. Let d =  2, q >/1 real, and 0 < fl < oo. Then either 

flee * fin 1 = _~freo(~ ) (5 .3)  ~ w i r ( f l )  P ~  ( f l )  = 0 and 

o r  

free # fin P ~  ( f l )  > 0 and ~wi r ( /~ )  = ~free(fl) (5.4) 

R e m a r k s  1. If, in addition, q~>3 is an integer, it follows easily 
from the results of the last section and the duality relation (1.13) (a proof 
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of which is given in Section 5.4) that (5.3) and (5.4) may be replaced by 
the dichotomy: Either 

P~(fl*) = 0  and ~l) (z) ~wir(fl) ~ ~wir(fl) = l~free(fl*) (5"3t) 

o r  

free * P ~  ( f l ) > 0  and ~i~(f l )> ~ (z) _ ~wir(fl)  - -  ~free(fl) ( 5 .4 ' )  

2. It follows from the duality relation (1.13) and the monotonicity of 
p b  [b= f l e e  or wir] as a function of fl that the first branch of the 
dichotomy [i.e., (5.3) or (5.3')] occurs when fl>~flo, the self-dual point, 
and that the second branch [i.e., (5.4) or (5 4 ')]  occurs whenever 
fl<fl,=inf{fl]M(fl)>O}. It is presumably the case that flo=fl,, but 
rigorously this is only known for sufficiently large q (see, e.g., ref. 27, where 
this is shown for q > 25). 

We close this subsection with a few remarks on duality. As usual, the 
dual site lattice (Z*) z is the set of points x * =  (x*, x*)e  (7] + �89 with half- 
integer coordinates, and the dual bond lattice B* is the set of nearest 
neighbor bonds in (2~*) 2. To each bond b ~ Bz, there corresponds a dual 
bond b*~ B* which has the same midpoint as b. Similarly, to each con- 
figuration co on B c B2, there corresponds a dual configuration co* on 
B * =  {b*lb~B}, given by 

01 if co(b)= 1 
co*(b*) = if co(b) = 0 (5.5) 

We will sometimes refer to the bonds b*~ B* for which co*(b*)= 1 as 
occupied dual bonds. Given a finite box 

A= {x~712 [ O<<.xl <~L, --M/2 <~x2 <~(M + 1)/2} 

and the corresponding set of bonds B+(A), one defines the dual of A as 

A*={x~(7]*)Z[3y~(Z*)2with(x,y)E(B+(A)) *} (5.6) 

Note that in general A and A* are not of the same cardinality. Using the 
appropriate Euler relation to relate # (co) to #(co*), it is straightforward 
to check that for a given configuration co on B+(A) and its dual co* on 
B(A*), 

Gwir. #, A(co) = Grree, #*, , ,l ,(co*) (5 .7)  
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where we have explicitly indicated the temperature dependence of the 
weights (2.14) and (2.16). Thus for each A e~s§ 

/A wir, p, A( A ) =/'/free, fl*. A * ( A  *) (5.8) 

where A* is the event A * =  {co*[coeA}. In the next two subsections, we 
will often characterize events A e ~+~a~ in terms of the corresponding dual 
events. A typical example is the event that the cluster of the origin does not 
touch the boundary OA, which is equivalent to the existence of a dual 
cluster in B(A*) containing a closed loop which surrounds the origin. 

5.2.  The  U p p e r  B o u n d  

Our upper bound is stated in terms of the finite-volume approximation 
^ b o x  ~ fin . vwi r to Vwir, see Eq. (4.21). As in the last subsection, we will often explicitly 
indicate the fl dependence of the relevant quantities. 

Theorem 5.2. Let d=2,  0 <f l  < oo, and q/> 1. Then there exists a 
constant C~(fl, q) < oo such that 

^ b  wir, . . . .  pL ~., M) <~ C~(fl, q)(rrrer 1) ~1))2 (5.9) 

Proof. Let A denote the box A(L, M), see Eq. (4.16). By its defini- 
tion (4.21), the connectivity function fbox t r  M) is the probability, in the wir, fl~*~, 

fin measure p wir, p, A, of the event R0, L(A) = { 0 ~ Ld, } n { 0 ~-, OA }. Equiv- 
alently, n, Ro.L(A) can be defined as the intersection of the event {0 ~ Ld~} 
and the event that there is a closed loop 7" of occupied dual bonds 
surrounding the points 0 and L~l. Consider the points 

x*  = ( - 1/2, + 1/2) and y *  = (L + 1/2, + 1/2) 

in A*. Given the fact that the connection from 0 to L ~  1 must occur without 
touching OA, it is clear that the dual loop 7" must consist of four pieces: 
the bond ( x * ,  x * ) ,  a path 7* connecting the point x *  to the point y * ,  
the bond ( y * , y * ) ,  and a path 7"- connecting the point y*- to the 
point x*-. Moreover, the two paths 7 * : x * - - * y *  must occur in 
B ( A * ) \ { ( x * - , x * ) ,  ( y * - , y * ) } .  Let us denote by R*, R*, R* ,  and R* 
the four events described above, namely (dual) occupation of the bond 
( x * _ , x * ) ,  the bond ( y * , y * )  and some paths 7~:x* - -*y*  in 
B(A*)\{ ( x * ,  x*  ),  (y*-, y*  ) }, respectively. Then R~z.(A) = {0 ~ LOl } n 
R* n R *  n R *  n R *  + .  

Consider now a configuration co E R* n R* n R*- n R* . It is an easily 
fin verified geometrical fact that co~Ro.L(A ) if and only if the dual cluster 
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joining x*  to y ' a n d  the dual cluster joining x*  to y *  are connected only 
via the two bonds (x*_, x * )  and ( y * , y * ) ,  i.e., if and only if there is no 
dual connection between .x*_ and .x*+ in the set B(A*)\{,'x*\ _,.x*),+ 
(y*_ ,y*)} .  Using finite energy in the form (2.24) to convert the two 
occupation events R* and R* to the events that the bonds ( x * ,  x *  ) and 
( y * , y * )  are vacant, and the duality relation (5.8) to transform the 
m e a s u r e  ~/wir. fl, A into the free measure/Zrree, p*. a*, we therefore obtain 

fbw~ p(L, M) <~ Cl(fl, q) ltrre~,p*,A*( {x*- ~--~ y*- } 

n {x *  ,-.y*} ~ {x* ~ x * } )  (5.10) 

with Cl(fl, q ) <  oo i f 0 < p <  oo. 
Next, we note that by Proposition 2.8, 

]Afree. f l . .A({X*_ ~--~ y*_..} f'~ {X~_ ~--~ y* } n {X* q-~ X*}) 

<~ltfree, p*,.4*(X*+ +-'~y*+)/.tfree. p*.A*(X*_ '---'y*_) (5.11) 

Using the monotonicity (2.18), we obtain 

,ttfree, p*,A*(X~: *"~y*++.)<~/.tfree, p*(X~ ~--~y~)='Cfree. g . ( ( t +  1)~1) (5.12) 

which, combined with (5.10) and (5.11 ), proves the theorem. 

5.3. The  L o w e r  B o u n d  Our lower bound is given in terms of the 
approximation -box fr~r zrre~ to ran , see Eq. (4.23). 

T h e o r e m  5.3. Let d =  2, 0 <f l  < m, and q/> 1. Then there exists a 
constant C_,(/~, q) > 0 such that for all positive integers M and L 

fin ^ M ~ b o x  rwir, p(Lel) >/C,(/?, - 1, _ q) (zwir.a.(L M)) 2 (5.13) 

Proof. In order to prove the theorem, we introduce several sets in 
both Z 2 and in its dual (Z*) 2. Consider the dual boxes 

1 A *  -- {x*  ~ (Z*)'- 1�89 < x;~< L -  _~, l <  x~< 2 M +  �89 

A* = {.~* ~(Z*)21�89 ~, -(2m+C_)<.x*<. -�89 

dual points 

X*+ = �89163 -t- ( M +  l)e2, x*+_=(L--�89189 
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dual bonds 

* - * b *  =(y*,y~d-~l) b •  •  _ 

and dual vertical lines y~' and y* joining the point x * - ~  to the point 
x* -01 ,  and the point y*  +01 to the point y*  +01, respectively. In addi- 
tion to these sets in (7/*) 2 and B*, consider the points 

.'~• = -t- M~2 and .9:i:=L~l-t-MSz 

in Z 2 and the vertical lines ~t and ~r in B 2 that join the point .~_ to the 
point if+, and the point y_  to the point )7 +, respectively. 

Consider now the events R~: that the points x* and y]: are connected 
by a path of dual occupied bonds in A*,  and the events R* that all bonds 
in y~ w b+.~, w b*.,, (~=1, r) are occupied. The event R* n R* n R*n R* 
then clearly implies the existence of an occupied dual path surrounding the 
points 0 and Ld~, so that the event {0~--~L~} n R *  nR*_ nR~'nR* is 
contained in the desired event Rn"0, L---- {0 ~ L d , }  n { IC(0)[ < oo}. As a con- 
sequence 

fin ^ fin Z'wir. p(Lel) =/-/wit./r L) 

>~Pwir.p({0~--)L~,} n R *  nR*_ nR~'nR*)  (5.14) 

Our goal is to modify the event in the argument of (5.14) so that (1) the 
event {0 ~ L~l} is guaranteed to occur, and (2) the two dual paths across 
A* and A* carry decoupling events that allow us to apply Proposition 2.6 
to factor their probabilities. We begin by degrading our estimate (5.14) by 
constructing vertical lines of occupied (direct) bonds: 

fin 13(L~l)~Uwir,,g({co~;tW~,r= I}  ('5 { 0 ~ - , ~ L e l }  n R *  nR*_ nR~'nR*) Z" wir, 

Here, as usual, co s denotes the configuration restricted to B. Using finite 
energy in the form (2.24) to flip the 4 M + 6  bonds in ~,*ub+.tw 
b * l  u?*ub*+.,, ub*,r,  we then obtain 

an #(LO~) >t C(fl, _~,4M+6. ~wir, qJ /~wir.a({coe, we~-- 1} n {0,--+L~,} o R *  nR*_) 

with a suitable constant C(fl, q) > O. 
Consider now the events (R]:) n" that x]: and y* are connected by 

dual clusters C*(x*~)cB(A*), i.e., by clusters that lie entirely within 
B(A~:), and hence are surrounded by decoupling circuits of occupied 
(direct) bonds in (B+(A*)) *. Clearly R* = (R~:) n" and thus 

n. p(L~l) ~" wir. 

>i C(fl, _ x 4 M + 6  . , { 0  ~_+L~I } O (R ,+) f in  n ( R * _ ) f i n )  

(5.15) 
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We now claim that 

{o~,u~r = 1} n { 0 ~ L 0 , }  n (R*)"n ~ ( R * )  "" 

= {o~,~ ~, = 1 } n (R*)  n" c~ (R*_)"" (5.16) 

In order to see this, let ~o be a configuration in (R*+) n". As noted above, 
the condition C * ( x * ) c B ( A * )  implies the existence of a closed path of 

tR* ~nn occupied bonds in (B+(A *))* surrounding x *  and y * .  Given co e ,  +, , 
let 7 be the innermost such path. Since 7 surrounds x *  and y * ,  but lies 
within (B+(A*))  *, it must visit the points 2+ and y + ;  thus it provides a 
connection between if+ and •+ by a path of occupied bonds. Observing 
that the vertical paths f / a n d  fr connect the point 0 to the point 2+ and 
the point L0~ to the point )~+, we see that there is automatically an 
occupied path from 0 to L ~ ,  which completes the proof of (5.16). 

Using once more finite energy, the relations (5.15) and (5.16) together 
with the duality relation (5.8) now imply that 

( _ )  ) v~,,p(Lg'~) >1 C(fl, q)4M+6flwir, fl({O)p, U f i r  = 1} n (R*)n" n R* "" 

C( R , . ~ 8 M + 6  , (JR* ~nn /> ~p,~1/ ~'wir. p~ +J c~(R*) ~") 

= C(n _,SM+6 " l  t~" -  R"_") ~t', q~ t f~r n (5.17) 

where R n" • are the events dual to (R*)  n". 
Finally, we use the fact that R n" and R n" are events of the form con- --+ 

sidered in Proposition 2.7, so that 

, . . n  Rnn) = (zr,r162 M)) (5.18) 

This completes the proof of Theorem 5.3. I 

Notice that, in contrast to the proof of Theorem 5.2, the above proof 
does not invoke monotonicity properties which depend on boundary con- 

fin ditions. Thus it can be used equally well to give a lower bound on rr,~, 
namely: 

Corol lary.  Let d = 2 ,  0 < f l < ~ ,  and q>~l. Then there exists a 
constant Cz(P, q) > 0 such that for all positive integers M and L 

fin ^ M - b o x  rr~. tj(Lel)/> C2(fl, - 1, M)) 2 q) (~:wir, p.(L (5.19) 

5.4. The Dichotomy and Percolation Probabilit ies 

In this subsection we prove Theorem 5.1. We start with a proposition 
which is essentially a corollary to the upper and lower bounds of Theorems 
5.2 and 5.3. 
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Proposition 5.4. Let d =  2, 0 < fl < oo, and q I> 1. Then 

fin l , free * 
_~free(/~ ) P~(/~ )=o ~war(fl) = if (5.20) 

and 

fin wir Boo (/~) = 0 ~wir(fl) = ~free(fl) if (5 .21)  

Proof .  Introducing t h e  n o t a t i o n  ~ w i r ( M ,  f l ) ^ b ~  " a n d  ,~b~ fl)  t o  

indicate the fl dependence of the correlation lengths ~w~(M)̂ b~ and ~free(M)-b~ 
corresponding to Zwi ~-b~ and rf~e e-box, the upper and lower bounds of Theorem 
5.2 and 5.3 imply that 

~b~ fl) < �89 (5.22) 

and 

1 ~'box[ AAr. .~ yfin [R~ (5.23) 

Taking the limit M ~  oo, and observing that the left-hand side of (5.22) 
fin goes to ~wir(fl) by Lemma 4.8 and the corollary at the end of Section 4, 

~n, tR*~ by the same corollary while the left-hand side of (5.23) goes to "~free'Y 
and Lemma 4.7, we conclude that 

1~ fin (R*~ fin , (  I * 
2 free'/-" I ~ ~wir(fl) "~- 2~free(fl ) (5 .24)  

Since ~nn (R*~ iofree(R*~ =() ,~free~/., /=~free(fl *) if _ ~  ,, .  , v, this implies the first part of the 
proposition. If p~r(fl) = 0, then n, ~wir(fl) = ~wi~(fl). In addition, by the results 
of ref. 1, ltwi,.p=/tr~ee, S whenever P ~ ( f l ) = 0  and hence ~free(fl)=~wir(fl). 
This implies the second part of the proposition. | 

In order to complete the proof of Theorem 5.1, we use the fact, proven 
in Section 2.4, that the free measure /%ee is ergodic under any nontrivial 
subgroup of the translation group (Theorem 2.10). Since, in addition, 
,//free is an FKG measure which is invariant under horizontal and vertical 
translations and axis reflections, a bond percolation analog of the theorem 
of ref. 18 applies, leading to the following result. 

Theorem 5.5. Let d = 2 ,  0 < f l <  Go, and q~> 1, and assume that 
pr~ee(fl) > 0. Then, with probability one with respect to the free measure 
/tfree ' p, any finite set of sites in 7/2 is surrounded by a circuit of occupied 
bonds. 

Corollaries. Let d =  2, 0 <fl  < ~ ,  and q >t 1. Then 

(1)  free wir * x,~ (P)P~o ( P ) = 0  (5.25) 
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(2) r,~ _ Poo (fl) is left continuous Poo ( f l ) - 0  for all fl<~flo. In particular, free 

at flo. 
(3) If Poowir(fl)---0 or P~ee(fl) > 0, then/trr,~,p( �9 ) = , U w i r ,  fl( - ), and, in 

particular, rr,r wir Po~ (fl) = Po~ (fl)- 

Proof. As noted above, the theorem follows from (a bond percola- 
tion analog of) ref. 18 and Theorem 2.10. Corollary 1 then follows 
immediately, and Corollary 2 also follows easily--see Eq. (1.14) and the 
paragraph preceding it. The first part of Corollary 3, namely that 

wir  Po~ ( f l ) - 0  implies arroo, a(  " ) = a w i r ,  a(  " ), is a result of ref. 1. That equality 
of the measures is also implied by Prroor ) > 0  follows from (5.25), ref. 1 
and the self-duality of the model. 

R e m a r ks .  I. Theorem 5.1 (the dichotomy) now follows imme- 
diately from Proposition 5.4 and Eq. (5.25). 

2 It turns out that, although not explicitly stated, Corollary 2 has 
already been established by Welsh (3s) in the course of the proof of his 
Theorem 7.3. We note that Welsh's proof does not require ergodicity, but 
only stationarity of the measure ~rr~r Instead it invokes uniqueness of the 
infinite cluster and an unpublished argument of Zhang. 

3 We expect that left continuity of rr~ Po~ (fl) at the transition point 
holds in all dimensions provided q/> 1. However, we do not expect free Po~ (fl) 
to be right continuous at the transition point if the system has a first-order 
transition; indeed, for q sufficiently large, this can be established using 
Pirogov-Sinai theory, as used, e.g., in ref. 28. This is to be contrasted with 
the behavior of p~r(fl). By standard percolation -_ (35) arguments, - namely 
expressing pw~r(fl) as the decreasing limit of the finite-volume quantities 
(3.4) (which are continuous and nondecreasing in fl), wir P~o (fl) is right con- 
tinuous for all fl and all q 1> 1 in dimension d > 1. However, in dimension 
d~> 2, convergent expansions have been used to show wit Po~ (fl) is not left 
continuous at the transition point provided q is sufficiently large ~25~ (see 
also refs. 27 and 28). 

4. Corollary 3 implies that in two dimensions the Gibbs state is 
unique at all fl except those for which fr~r Po~ ( f l )=0  while P~r( f l )>0 .  
Presumably, this never occurs for systems with second-order transitions 
(q~<4 in d = 2 ) ,  and occurs only at a single point-- the transition 
point--for systems with first-order transitions (q > 4 in d =  2). Again, this 
can be proven via expansion methods in d/> 2 for q sufficiently large. 

We conclude this section with a little result which is an easy conse- 
quence of Proposition 5.4. The result shows that continuity of the 
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magnet izat ion at tip ensures criticality of  the transition, i.e., divergence of 
the correlation length(s). 

Proposition 5.6. Let d = 2  and q t> 1. Then M(flo ) -  P~r(flo)=0 
implies nn ~ w i r ( f l o )  = O0 and hence also ~nn tn f ree , /"o/  = ~f ree ( f lo )  = ~ w i r ( f l o )  = 00. 

Proof. By the assumpt ion wir Po~ (tip)=0, the F K G  ordering of states 
(2.23) and the definition of tip, we have 0 = Prreet fl ~ = pr~eer R*~ and hence 

- - oo  " , / ~o . ,  - - oo  " , / " o , ' ~  

by the first branch (5.20) of  Proposi t ion 5.4 

fin I :k 1%~ ( R  
2 ~ f r e r  = _ f r e e ,  P o !  ~ w i r ( f l o )  : ( 5 . 2 6 )  

On the other hand, again by the assumption wir Po~ (flo) = 0 ,  we have the 
second branch (5.21) of  Proposi t ion 5.4, namely 

fin ~,i~(flo) - ~rr~(flo) (5.27) 

F rom (5.26) and (5.27), we conclude that  either ~rre~(flo)=0 or 
~r~(flo) = ~ .  The first case is easily ruled out by considering, e.g., rrre~(d~). 
That  the other correlation lengths also diverge is an immediate  conse- 
quence of the remark following Theorem 4.3. I 

APPENDIX. REFLECTION POSITIVITY AND THE 
TRANSFER MATRIX 

The concept of  reflection positivity and its consequences are well- 
known tools in the context of  field theory. For  the convenience of the 
reader we give a brief review in this appendix. 

We consider a (finite or infinite) lattice A c Z d which is invariant 
under reflections at a plane Z. Here Z is either a lattice plane or a plane 
which lies halfway between two lattice planes. Denot ing the reflection at Z 
by r, we then decompose A as A = A+ w A _ ,  where A§ are the points on 
one side of 27, A =r(A+) are the points on the other side of  27, and 
A_ c~ A+ = Z c~ A (which is of  course empty  if Z lies between two lattice 
planes). 

For  a local observable A with support  supp A c A + ,  one introduces 
the reflected observable r(A) as 

( r (A))(a)  = A(r(a)) (A.I)  

where r(a).,. = arc,-). Reflection positivity of  the Ports model  is the statement 
that 

(r(A) A>b./1 >1 0 (A.2) 

The p roof  of  (A.2) is standard; for the strategy, see, e.g., refs. 12 and 36. 
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The inequality (A.2) has several important consequences. Here we are 
mainly interested in the representation of truncated expectation values as 
matrix elements of a suitably defined transfer matrix T. In order to define 
the transfer matrix T in the setting considered here, we need, in addition 
to the reflection invariance of A, that A is invariant under translations per- 
pendicular to Z. We therefore assume that A is of the form 

A = Z x A 1  

where AI is a (finite or infinite) sublattice of 7/a-~. We then consider the 
algebra sg+ of local observables with support in A +, where from now on 

A+ = {(x, x) e~-"l x~>0, g~A,} 

while Z = { (x, Y) ~ 71alx = 0, .f s A ~ }. Due to (A.2), the equation 

( A , B )  :=(r(A)B)b.A (A.3) 

defines a positive semi-definite scalar product over d + .  Dividing out the 
corresponding null space JV" and completing the resulting space in the 
usual way, this leads to the definition of a Hilbert space 5/g = M+/iV. 

Next, we introduce, for each local observable A ~ ~r the observable 
TA which is obtained from A by translation by one lattice unit in the 
positive direction perpendicular to L'. It is an easy consequence of the 
Cauchy-Schwarz inequality for the scalar product (A.3) (see ref. 36 for 
details) that T obeys the inequalities 

0 <~ (A,  TA) <~ (A,  A )  (A.4) 

The operator T therefore defines a positive transfer matrix, which obeys the 
inequalities 

0~<T~<I 

as an operator on dr. Observing that the vector 12 corresponding to the 
constant function 1 ~ d +  is an eigenvector of T with eigenvalue 1, we note 
that the norm of T is one. 

We finally consider the interpretation of truncated expectation values 
in the above Hitbert space representation. Since 

( r(A) )b, A = ( r( A). 1 )b. ,~ = ( A, (2) (A.5a) 

while 

(T"A)b,A = (12, T"A)  =(T"I2,  A )  =(12, A )  (A.5b) 
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one immediately obtains 

(r(A); T"A)b.A= ( A, T"A) --(  A,t-2)(12, A) (A.6) 

Introducing the projection operator P• onto the Hilbert space orthogonal 
to t?, we find that Eq. (A.6) becomes 

(r(A); T"A)b.A = ( A • T"A • (A.7) 

where 

A . = P . A = A - ( g 2 ,  A)s (A.8) 

If the support of A is a subset of the lattice plane Z ' , r (A)=A,  and 
Eq. (A.7) reduces to 

(A; T"A)b.A = (A• T"A• (A.9) 

Equation (A.9) is an important technical tool in the proof of the existence 
of the correlation lengths ~,c ~) and ~,~2) wir ~ wit" 

Remark: In the context of Euclidean field theory, the direction per- 
pendicular to L" is often interpreted as the Euclidean time. The Hilbert 
space a ~ = d + / J l  r is then nothing but the quantum mechanical Hilbert 
space of the considered model, and T is the generator of the Euclidean time 
translations, i.e. T =  e-'H, where e is the lattice spacing and H is the 
Hamilton operator of the theory. 

However, ~ and T have no such interpretation for the classical Potts 
model. This is due to the fact that here A is the lattice of a classical system, 
and not a lattice approximation to Euclidean space-time. 
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